Title: | Evaluate Partitioned Survival and State Transition Models |
---|---|
Description: | Fits and evaluates three-state partitioned survival analyses (PartSAs) and Markov models (clock forward or clock reset) to progression and overall survival data typically collected in oncology clinical trials. These model structures are typically considered in cost-effectiveness modeling in advanced/metastatic cancer indications. Muston (2024). "Informing structural assumptions for three state oncology cost-effectiveness models through model efficiency and fit". Applied Health Economics and Health Policy. |
Authors: | Dominic Muston [aut, cre] , Merck & Co., Inc., Rahway, NJ, USA and its affiliates [cph, fnd] |
Maintainer: | Dominic Muston <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.3.2 |
Built: | 2025-01-17 07:11:50 UTC |
Source: | https://github.com/merck/psm3mkv |
Calculate restricted mean durations for each health state (progression free and progressed disease) for all three models (partitioned survival, clock forward state transition model, clock reset state transition model).
calc_allrmds( ptdata, inclset = 0, dpam, psmtype = "simple", cuttime = 0, Ty = 10, lifetable = NA, discrate = 0, rmdmethod = "int", timestep = 1, boot = FALSE )
calc_allrmds( ptdata, inclset = 0, dpam, psmtype = "simple", cuttime = 0, Ty = 10, lifetable = NA, discrate = 0, rmdmethod = "int", timestep = 1, boot = FALSE )
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
|
inclset |
Vector to indicate which patients to include in analysis |
dpam |
List of statistical fits to each endpoint required in PSM, STM-CF and STM-CR models. |
psmtype |
Either "simple" or "complex" PSM formulation |
cuttime |
Time cutoff - this is nonzero for two-piece models. |
Ty |
Time duration over which to calculate. Assumes input is in years, and patient-level data is recorded in weeks. |
lifetable |
Optional, a life table. Columns must include |
discrate |
Discount rate (% per year) |
rmdmethod |
can be "int" (default for full integral calculations) or "disc" for approximate discretized calculations |
timestep |
required if method=="int", default being 1 |
boot |
logical flag to indicate whether abbreviated output is required (default = FALSE), for example for bootstrapping |
List of detailed numeric results
cutadj indicates the survival function and area under the curves for PFS and OS up to the cutpoint
results provides results of the restricted means calculations, by model and state.
# Create dataset and fit survival models (splines) bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # RMD using default "int" method, no lifetable constraint calc_allrmds(bosonc, dpam=params) # RMD using discretized ("disc") method, no lifetable constraint calc_allrmds(bosonc, dpam=params, rmdmethod="disc", timestep=1, boot=TRUE)
# Create dataset and fit survival models (splines) bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # RMD using default "int" method, no lifetable constraint calc_allrmds(bosonc, dpam=params) # RMD using discretized ("disc") method, no lifetable constraint calc_allrmds(bosonc, dpam=params, rmdmethod="disc", timestep=1, boot=TRUE)
Derive the hazards of death pre- and post-progression under either simple or complex PSM formulations.
calc_haz_psm(timevar, ptdata, dpam, psmtype)
calc_haz_psm(timevar, ptdata, dpam, psmtype)
timevar |
Vector of times at which to calculate the hazards |
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
Survival data for all other endpoints (time to progression, pre-progression death, post-progression survival) are derived from PFS and OS. |
dpam |
List of survival regressions for each endpoint:
|
psmtype |
Either "simple" or "complex" PSM formulation |
List of pre, the pre-progression hazard, and post, the post-progression hazard
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) calc_haz_psm(0:10, ptdata=bosonc, dpam=params, psmtype="simple") calc_haz_psm(0:10, ptdata=bosonc, dpam=params, psmtype="complex")
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) calc_haz_psm(0:10, ptdata=bosonc, dpam=params, psmtype="simple") calc_haz_psm(0:10, ptdata=bosonc, dpam=params, psmtype="complex")
Calculate likelihood values and other summary output for the following three state models structures: partitioned survival, clock forward state transition, and clock reset state transition. The function requires appropriately formatted patient-level data, a set of fitted survival regressions, and the time cut-off (if two-piece modeling is used).
calc_likes(ptdata, dpam, cuttime = 0)
calc_likes(ptdata, dpam, cuttime = 0)
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
Survival data for all other endpoints (time to progression, pre-progression death, post-progression survival) are derived from PFS and OS. |
dpam |
List of survival regressions for each endpoint:
|
cuttime |
Time cutoff - this is nonzero for two-piece models. |
A list of three tibbles:
all
is a tibble of results for all patients:
methname
: the model structure or method.
npar
: is the number of parameters used by that method.
npts_1
to npts_4
are the number of patients experiencing outcomes 1-4 respectively (see below), and npts_tot
the total.
ll_1
to ll_4
are the log-likelihood values for patients experiencing outcomes 1-4 respectively (see below), and ll_tot
the total.
valid
is a tibble of the same design as all
but only in patients with valid likelihoods for all 4 methods
sum
is a tibble in respect of patients with valid likelihoods for all 4 methods providing:
npts
: number of patients contributing results for this method.
npar
: number of parameters used by that method.
ll
: total log-likelihood
AIC
: Akaike Information Criterion value for this model
BIC
: Bayesian Information Criterion value for this model
The four outcomes are as follows:
(1) refers to patients who remain alive and progression-free during the follow-up;
(2) refers to patients who die without prior progression during the follow-up;
(3) refers to patients who progress and then remain alive for the remaining follow-up, and
(4) refers to patients who progress and die within the follow-up.
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) calc_likes(bosonc, dpam=params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) calc_likes(bosonc, dpam=params)
Calculates the restricted mean duration, given the form of a parametric distribution of Royston-Parmar splines
calc_rmd(Tw, type = NA, spec = NA, survobj = NULL)
calc_rmd(Tw, type = NA, spec = NA, survobj = NULL)
Tw |
is the time horizon (weeks) over which the mean should be calculated. |
type |
is either "par" for regular parametric form (exponential, weibull etc) or "spl" for Royston-Parmar splines. |
spec |
is a list comprising:
If type=="par":
|
survobj |
is a survival fit object from flexsurv::flexsurvspline or flexsurv::flexsurvreg |
the restricted mean duration, a numeric value.
calc_rmd(Tw=200, type="spl", spec=list(gamma=c(0.1,0.2,0.1), knots=c(-5,2,4), scale="normal") ) calc_rmd(Tw=250, type="par", spec=list(dist="lnorm", pars=c(3,1)) )
calc_rmd(Tw=200, type="spl", spec=list(gamma=c(0.1,0.2,0.1), knots=c(-5,2,4), scale="normal") ) calc_rmd(Tw=250, type="par", spec=list(dist="lnorm", pars=c(3,1)) )
Derive the post-progression survival (PPS) function under the simple or complex PSM formulation.
calc_surv_psmpps(totime, fromtime = 0, ptdata, dpam, psmtype = "simple")
calc_surv_psmpps(totime, fromtime = 0, ptdata, dpam, psmtype = "simple")
totime |
Vector of times to which the survival function is calculated |
fromtime |
Vector of times from which the survival function is calculated |
ptdata |
Patient-level dataset |
dpam |
List of fitted survival models for each endpoint |
psmtype |
Either "simple" or "complex" PSM formulation |
Vector of PPS survival function values
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) calc_surv_psmpps(totime=1:10, fromtime=rep(1,10), ptdata=bosonc, dpam=params, psmtype="simple")
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) calc_surv_psmpps(totime=1:10, fromtime=rep(1,10), ptdata=bosonc, dpam=params, psmtype="simple")
pfs.durn
with the lower of ttp.durn
and os.durn
, and checks that the event field pfs.flag
is consistent with ttp.flag
and os.flag
(is 1 when either ttp.flag
or os.flag
is one).Check consistency of PFS definition
Check that PFS is defined consistently with TTP and OS in a dataset. This convenience function compares pfs.durn
with the lower of ttp.durn
and os.durn
, and checks that the event field pfs.flag
is consistent with ttp.flag
and os.flag
(is 1 when either ttp.flag
or os.flag
is one).
check_consistent_pfs(ds)
check_consistent_pfs(ds)
ds |
Tibble of complete patient-level dataset
|
List containing:
durn
: Logical vector comparing expected and actual PFS durations
flag
: Logical vector comparing expected and actual PFS event flags
all
: Single logical value of TRUE if all durations and flags match as expected, FALSE otherwise
ponc <- create_dummydata("pharmaonc") check_consistent_pfs(ponc)
ponc <- create_dummydata("pharmaonc") check_consistent_pfs(ponc)
Compare the total log-likelihood values for the patient-level dataset after fitting PSM-simple and PSM-complex models to each combination of endpoint distributions
compare_psm_likes(ptdata, fitslist, cuttime = 0)
compare_psm_likes(ptdata, fitslist, cuttime = 0)
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
|
fitslist |
List of distribution fits to relevant endpoints, after calling |
cuttime |
Time cutoff - this is nonzero for two-piece models. |
List containing
results
: Dataset of calculation results for each model
bests
: Tibble indicating which is the best fitting model individually or jointly, to each endpoint, according to AIC or BIC
# Fit parametric distributions to a dataset bosonc <- create_dummydata("flexbosms") parfits <- fit_ends_mods_par(bosonc) splfits <- fit_ends_mods_spl(bosonc) # Present comparison of likelihood calculations compare_psm_likes(bosonc, parfits) compare_psm_likes(bosonc, splfits)
# Fit parametric distributions to a dataset bosonc <- create_dummydata("flexbosms") parfits <- fit_ends_mods_par(bosonc) splfits <- fit_ends_mods_spl(bosonc) # Present comparison of likelihood calculations compare_psm_likes(bosonc, parfits) compare_psm_likes(bosonc, splfits)
Constrain survival probabilities according to hazards in a lifetable Recalculated constrained survival probabilities (by week) as the lower of the original unadjusted survival probability and the survival implied by the given lifetable (assumed indexed as years).
constrain_survprob( survprob1, survprob2 = NA, lifetable = NA, timevec = 0:(length(survprob1) - 1) )
constrain_survprob( survprob1, survprob2 = NA, lifetable = NA, timevec = 0:(length(survprob1) - 1) )
survprob1 |
(Unconstrained) survival probability value or vector |
survprob2 |
Optional survival probability value or vector to constrain on (default = NA) |
lifetable |
Lifetable (default = NA) |
timevec |
Vector of times corresponding with survival probabilities above |
Vector of constrained survival probabilities
ltable <- tibble::tibble(lttime=0:20, lx=c(1,0.08,0.05,0.03,0.01,rep(0,16))) survprob <- c(1,0.5,0.4,0.2,0) constrain_survprob(survprob, lifetable=ltable) timevec <- 100*(0:4) constrain_survprob(survprob, lifetable=ltable, timevec=timevec) survprob2 <- c(1,0.45,0.35,0.15,0) constrain_survprob(survprob, survprob2)
ltable <- tibble::tibble(lttime=0:20, lx=c(1,0.08,0.05,0.03,0.01,rep(0,16))) survprob <- c(1,0.5,0.4,0.2,0) constrain_survprob(survprob, lifetable=ltable) timevec <- 100*(0:4) constrain_survprob(survprob, lifetable=ltable, timevec=timevec) survprob2 <- c(1,0.45,0.35,0.15,0) constrain_survprob(survprob, survprob2)
Create dummy dataset to illustrate psm3mkv
create_dummydata(dsname)
create_dummydata(dsname)
dsname |
Dataset name, as follows:
|
Tibble dataset, for use with psm3mkv functions
create_dummydata("survcan") |> head() create_dummydata("flexbosms") |> head() create_dummydata("pharmaonc") |> head()
create_dummydata("survcan") |> head() create_dummydata("flexbosms") |> head() create_dummydata("pharmaonc") |> head()
Create the additional time-to-event endpoints, adjusting for cutpoint
create_extrafields(ds, cuttime = 0)
create_extrafields(ds, cuttime = 0)
ds |
Patient-level dataset |
cuttime |
Time cutpoint |
Tibble of complete patient-level dataset, adjusted for cutpoint
ttp.durn
, pfs.durn
, ppd.durn
and os.durn
are the durations of TTP (time to progression), PFS (progression-free survival), PPD (pre-progression death) and OS (overall survival) respectively beyond the cutpoint.
pps.durn
is the duration of survival beyond progression, irrespective of the cutpoint.
pps.odurn
is the difference between ttp.durn
and os.durn
(which may be different to pps.durn
).
ttp.flag
, pfs.flag
, ppd.flag
, os.flag
, and pps.flag
are event flag indicators for TTP, PFS, PPD, OS and PPS respectively (1=event, 0=censoring).
bosonc <- create_dummydata("flexbosms") create_extrafields(bosonc, cuttime=10)
bosonc <- create_dummydata("flexbosms") create_extrafields(bosonc, cuttime=10)
When there are multiple survival regressions fitted to the same endpoint and dataset, it is necessary to identify the preferred model. This function reviews the fitted regressions and selects that with the minimum Akaike or Bayesian Information Criterion (AIC, BIC), depending on user choice. Model fits must be all parametric or all splines.
find_bestfit(reglist, crit)
find_bestfit(reglist, crit)
reglist |
List of fitted survival regressions to an endpoint and dataset. |
crit |
Criterion to be used in selection of best fit, either "aic" (Akaike Information Criterion) or "bic" (Bayesian Information Criterion). |
List of the single survival regression with the best fit.
bosonc <- create_dummydata("flexbosms") # Parametric modeling fits_par <- fit_ends_mods_par(bosonc) find_bestfit(fits_par$ttp, "aic") # Splines modeling fits_spl <- fit_ends_mods_spl(bosonc) find_bestfit(fits_spl$ttp, "bic")
bosonc <- create_dummydata("flexbosms") # Parametric modeling fits_par <- fit_ends_mods_par(bosonc) find_bestfit(fits_par$ttp, "aic") # Splines modeling fits_spl <- fit_ends_mods_spl(bosonc) find_bestfit(fits_spl$ttp, "bic")
Fits multiple parametric survival regressions, according to the distributions stipulated, to the multiple endpoints required in fitting partitioned survival analysis, clock forward and clock reset semi-markov models.
fit_ends_mods_par( simdat, cuttime = 0, ppd.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), ttp.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), pfs.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), os.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), pps_cf.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), pps_cr.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), expvar = NA )
fit_ends_mods_par( simdat, cuttime = 0, ppd.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), ttp.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), pfs.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), os.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), pps_cf.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), pps_cr.dist = c("exp", "weibullPH", "llogis", "lnorm", "gamma", "gompertz"), expvar = NA )
simdat |
Dataset of patient level data. Must be a tibble with columns named:
Survival data for all other endpoints (time to progression, pre-progression death, post-progression survival) are derived from PFS and OS. |
cuttime |
Cut-off time for a two-piece model, equals zero for one-piece models. |
ppd.dist |
Vector of distributions (named per |
ttp.dist |
Vector of distributions (named per |
pfs.dist |
Vector of distributions (named per |
os.dist |
Vector of distributions (named per |
pps_cf.dist |
Vector of distributions (named per |
pps_cr.dist |
Vector of distributions (named per |
expvar |
Explanatory variable for modeling of PPS |
A list by endpoint, then distribution, each containing two components:
result: A list of class flexsurvreg containing information about the fitted model.
error: Any error message returned on fitting the regression (NULL indicates no error).
Spline modeling is handled by fit_ends_mods_spl()
bosonc <- create_dummydata("flexbosms") fit_ends_mods_par(bosonc, expvar=bosonc$ttp.durn)
bosonc <- create_dummydata("flexbosms") fit_ends_mods_par(bosonc, expvar=bosonc$ttp.durn)
Fits multiple survival regressions, according to the distributions stipulated, to the multiple endpoints required in fitting partitioned survival analysis, clock forward and clock reset semi-markov models.
fit_ends_mods_spl( simdat, knot_set = 1:3, scale_set = c("hazard", "odds", "normal"), expvar = NA )
fit_ends_mods_spl( simdat, knot_set = 1:3, scale_set = c("hazard", "odds", "normal"), expvar = NA )
simdat |
Dataset of patient level data. Must be a tibble with columns named:
Survival data for all other endpoints (time to progression, pre-progression death, post-progression survival) are derived from PFS and OS. |
knot_set |
is a vector of the numbers of knots to consider, following |
scale_set |
is a vector of the spline scales to consider, following |
expvar |
Explanatory variable for modeling of PPS |
A list by endpoint, then distribution, each containing two components:
result: A list of class flexsurv::flexsurvspline containing information about the fitted model.
error: Any error message returned on fitting the regression (NULL indicates no error). Also, the given cuttime.
Parametric modeling is handled by fit_ends_mods_par()
# Create dataset in suitable form using bos dataset from the flexsurv package bosonc <- create_dummydata("flexbosms") fit_ends_mods_spl(bosonc, expvar=bosonc$ttp.durn)
# Create dataset in suitable form using bos dataset from the flexsurv package bosonc <- create_dummydata("flexbosms") fit_ends_mods_spl(bosonc, expvar=bosonc$ttp.durn)
Graph the PSM hazard functions
graph_psm_hazards(timevar, endpoint, ptdata, dpam, psmtype)
graph_psm_hazards(timevar, endpoint, ptdata, dpam, psmtype)
timevar |
Vector of times at which to calculate the hazards |
endpoint |
Endpoint for which hazard is required (TTP, PPD, PFS, OS or PPS) |
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
|
dpam |
List of survival regressions for each endpoint:
|
psmtype |
Either "simple" or "complex" PSM formulation |
List containing:
adj
is the hazard adjusted for constraints
unadj
is the unadjusted hazard
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # Create graphics # psmh_simple <- graph_psm_hazards( # timerange=(0:10)*6, # endpoint="OS", # dpam=params, # psmtype="simple") # psmh_simple$graph
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # Create graphics # psmh_simple <- graph_psm_hazards( # timerange=(0:10)*6, # endpoint="OS", # dpam=params, # psmtype="simple") # psmh_simple$graph
Graph the PSM survival functions
graph_psm_survs(timevar, endpoint, ptdata, dpam, psmtype)
graph_psm_survs(timevar, endpoint, ptdata, dpam, psmtype)
timevar |
Vector of times at which to calculate the hazards |
endpoint |
Endpoint for which hazard is required (TTP, PPD, PFS, OS or PPS) |
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
|
dpam |
List of survival regressions for each endpoint:
|
psmtype |
Either "simple" or "complex" PSM formulation |
List containing:
adj
is the hazard adjusted for constraints
unadj
is the unadjusted hazard
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # Graphic illustrating effect of constraints on OS model psms_simple <- graph_psm_survs( timevar=6*(0:10), endpoint="OS", ptdata=bosonc, dpam=params, psmtype="simple" ) psms_simple$graph
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # Graphic illustrating effect of constraints on OS model psms_simple <- graph_psm_survs( timevar=6*(0:10), endpoint="OS", ptdata=bosonc, dpam=params, psmtype="simple" ) psms_simple$graph
Graph the observed and fitted state membership probabilities for PF, PD, OS and PPS.
graph_survs(ptdata, dpam, cuttime = 0)
graph_survs(ptdata, dpam, cuttime = 0)
ptdata |
Dataset of patient level data. Must be a tibble with columns named:
Survival data for all other endpoints (time to progression, pre-progression death, post-progression survival) are derived from PFS and OS. |
dpam |
List of survival regressions for each endpoint:
|
cuttime |
is the cut-off time for a two-piece model (default 0, indicating a one-piece model) |
List of two items as follows.
data
is a tibble containing data derived and used in the derivation of the graphics.
graph
is a list of four graphics as follows:
pf
: Membership probability in PF (progression-free) state versus time since baseline, by method
pd
: Membership probability in PD (progressive disease) state versus time since baseline, by method
os
: Probability alive versus time since baseline, by method
pps
: Probability alive versus time since progression, by method
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # Create graphics gs <- graph_survs(ptdata=bosonc, dpam=params) gs$graph$pd
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_par(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) # Create graphics gs <- graph_survs(ptdata=bosonc, dpam=params) gs$graph$pd
Calculates membership probability of being alive at a particular time (vectorized), given either state transition model (clock forward or clock reset) with given statistical distributions and parameters. This is the sum of membership probabilities in the progression free and progressed disease states.
prob_os_psm(time, dpam, starting = c(1, 0, 0))
prob_os_psm(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) |
dpam |
List of survival regressions for model endpoints. This must include overall survival (OS). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_os_psm(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_os_psm(0:100, params)
Calculates membership probability of being alive at a given time (vectorized). This probability is from the state transition clock forward model, according to the given statistical distributions and parameters.
prob_os_stm_cf(time, dpam, starting = c(1, 0, 0))
prob_os_stm_cf(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) from baseline. |
dpam |
List of survival regressions for model endpoints. This must include pre-progression death (PPD), time to progression (TTP) and post progression survival calculated under the clock forward model (PPS-CF). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_os_stm_cf(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_os_stm_cf(0:100, params)
Calculates membership probability of being alive at a given time (vectorized). This probability is from the state transition clock reset model, according to the given statistical distributions and parameters.
prob_os_stm_cr(time, dpam, starting = c(1, 0, 0))
prob_os_stm_cr(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) from baseline. |
dpam |
List of survival regressions for model endpoints. This must include pre-progression death (PPD), time to progression (TTP) and post progression survival calculated under the clock reset model (PPS-CR). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_os_stm_cr(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_os_stm_cr(0:100, params)
Calculates membership probability of having progressed disease at a particular time (vectorized), given the partitioned survival model with certain statistical distributions and parameters.
prob_pd_psm(time, dpam, starting = c(1, 0, 0))
prob_pd_psm(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) |
dpam |
List of survival regressions for model endpoints. This must include progression-free survival (PFS) and overall survival (OS). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pd_psm(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pd_psm(0:100, params)
Calculates membership probability of the progressed disease state at a given time (vectorized). This probability is from the state transition clock forward model, according to the given statistical distributions and parameters.
prob_pd_stm_cf(time, dpam, starting = c(1, 0, 0))
prob_pd_stm_cf(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) from baseline. |
dpam |
List of survival regressions for model endpoints. This must include pre-progression death (PPD), time to progression (TTP) and post progression survival calculated under the clock forward model (PPS-CF). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pd_stm_cf(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pd_stm_cf(0:100, params)
Calculates membership probability of the progressed disease state at a given time (vectorized). This probability is from the state transition clock reset model, according to the given statistical distributions and parameters.
prob_pd_stm_cr(time, dpam, starting = c(1, 0, 0))
prob_pd_stm_cr(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) from baseline. |
dpam |
List of survival regressions for model endpoints. This must include pre-progression death (PPD), time to progression (TTP) and post progression survival calculated under the clock reset model (PPS-CR). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pd_stm_cr(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pd_stm_cr(0:100, params)
Calculates membership probability for the progression free state, at a particular time (vectorized), given a partitioned survival model with given statistical distributions and parameters.
prob_pf_psm(time, dpam, starting = c(1, 0, 0))
prob_pf_psm(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) |
dpam |
List of survival regressions for model endpoints. This must include progression-free survival (PFS). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pf_psm(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pf_psm(0:100, params)
Calculates membership probability for the progression free state, at a particular time (vectorized), given either state transition model (clock forward or clock reset) with given statistical distributions and parameters.
prob_pf_stm(time, dpam, starting = c(1, 0, 0))
prob_pf_stm(time, dpam, starting = c(1, 0, 0))
time |
Time (numeric and vectorized) |
dpam |
List of survival regressions for model endpoints. This must include pre-progression death (PPD) and time to progression (TTP). |
starting |
Vector of membership probabilities (PF, PD, death) at time zero. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pf_stm(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pf_stm(0:100, params)
Calculates probability of post progression survival at a given time from progression (vectorized). This probability is from the state transition clock forward model, according to the given statistical distributions and parameters.
prob_pps_cf(ttptimes, ppstimes, dpam)
prob_pps_cf(ttptimes, ppstimes, dpam)
ttptimes |
Time (numeric and vectorized) from progression - not time from baseline. |
ppstimes |
Time (numeric and vectorized) of progression |
dpam |
List of survival regressions for model endpoints. This must include post progression survival calculated under the clock forward state transition model. |
Vector of the mean probabilities of post-progression survival at each PPS time, averaged over TTP times.
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pps_cf(0:100, 0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pps_cf(0:100, 0:100, params)
Calculates probability of post progression survival at a given time from progression (vectorized). This probability is from the state transition clock reset model, according to the given statistical distributions and parameters.
prob_pps_cr(time, dpam)
prob_pps_cr(time, dpam)
time |
Time (numeric and vectorized) from baseline - not time from progression. |
dpam |
List of survival regressions for model endpoints. This must include post progression survival calculated under the clock reset state transition model. |
Numeric value
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pps_cr(0:100, params)
bosonc <- create_dummydata("flexbosms") fits <- fit_ends_mods_spl(bosonc) # Pick out best distribution according to min AIC params <- list( ppd = find_bestfit(fits$ppd, "aic")$fit, ttp = find_bestfit(fits$ttp, "aic")$fit, pfs = find_bestfit(fits$pfs, "aic")$fit, os = find_bestfit(fits$os, "aic")$fit, pps_cf = find_bestfit(fits$pps_cf, "aic")$fit, pps_cr = find_bestfit(fits$pps_cr, "aic")$fit ) prob_pps_cr(0:100, params)
Function to lookup values according to an index. Aims to behave similarly to VLOOKUP in Microsoft Excel, however several lookups can be made at once (indexval
can be a vector) and interpolation is available where lookups are inexact (choice of 4 methods).
vlookup(indexval, indexvec, valvec, method = "geom")
vlookup(indexval, indexvec, valvec, method = "geom")
indexval |
The index value to be looked-up (may be a vector of multiple values) |
indexvec |
The vector of indices to look-up within |
valvec |
The vector of values corresponding to the vector of indices |
method |
Method may be |
Numeric value or vector, depending on the lookup/interpolation method chosen:
floor
: Floor (minimum) value, where interpolation is required between measured values
ceiling
: Ceiling (maximum) value, where interpolation is required between measured values
arith
: Arithmetic mean, where interpolation is required between measured values
geom
: Geometric mean, where interpolation is required between measured values
HMDHFDplus::readHMDweb can be used to obtain lifetables from the Human Mortality Database
# Suppose we have survival probabilities at times 0 to 20 times <- 0:20 survival <- 1-times*0.04 # We would like to look-up the survival probability at time 7 vlookup(7, times, survival) # In this case, the floor, ceiling, arith and geom values are identical # because survival time 7 is known, and no interpolation is necessary vlookup(c(7, 7.5), times, survival) # The second row of the returned tibble reveal different estimates of the survival at time 7.5. # The values vary according to the interpolation method between # observed survival values at times 7 and 8.
# Suppose we have survival probabilities at times 0 to 20 times <- 0:20 survival <- 1-times*0.04 # We would like to look-up the survival probability at time 7 vlookup(7, times, survival) # In this case, the floor, ceiling, arith and geom values are identical # because survival time 7 is known, and no interpolation is necessary vlookup(c(7, 7.5), times, survival) # The second row of the returned tibble reveal different estimates of the survival at time 7.5. # The values vary according to the interpolation method between # observed survival values at times 7 and 8.