
Package: gsDesign2 (via r-universe)
November 4, 2024

Title Group Sequential Design with Non-Constant Effect

Version 1.1.2.24

Description The goal of 'gsDesign2' is to enable fixed or group
sequential design under non-proportional hazards. To enable
highly flexible enrollment, time-to-event and time-to-dropout
assumptions, 'gsDesign2' offers piecewise constant enrollment,
failure rates, and dropout rates for a stratified population.
This package includes three methods for designs: average hazard
ratio, weighted logrank tests in Yung and Liu (2019)
<doi:10.1111/biom.13196>, and MaxCombo tests. Substantial
flexibility on top of what is in the 'gsDesign' package is
intended for selecting boundaries.

License GPL-3

URL https://merck.github.io/gsDesign2/,

https://github.com/Merck/gsDesign2

BugReports https://github.com/Merck/gsDesign2/issues

Encoding UTF-8

Depends R (>= 3.5.0)

Imports corpcor, data.table, dplyr, gsDesign, gt, methods, mvtnorm,
npsurvSS (>= 1.1.0), r2rtf, stats, survival, tibble, tidyr,
utils, Rcpp

Suggests covr, ggplot2, kableExtra, knitr, rmarkdown, simtrial,
testthat (>= 3.0.0)

VignetteBuilder knitr

LinkingTo Rcpp

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Config/pak/sysreqs make libicu-dev libxml2-dev libssl-dev libnode-dev

Repository https://merck.r-universe.dev

RemoteUrl https://github.com/merck/gsdesign2

1

https://doi.org/10.1111/biom.13196
https://merck.github.io/gsDesign2/
https://github.com/Merck/gsDesign2
https://github.com/Merck/gsDesign2/issues

2 Contents

RemoteRef HEAD

RemoteSha b93e91ffa721ff9f45b82794de69e2f2e935789f

Contents

ahr . 3
ahr_blinded . 4
as_gt . 6
as_rtf . 10
define_enroll_rate . 14
define_fail_rate . 15
expected_accrual . 16
expected_event . 18
expected_time . 21
fixed_design_ahr . 22
gs_b . 30
gs_create_arm . 31
gs_design_ahr . 32
gs_design_combo . 36
gs_design_npe . 39
gs_design_rd . 44
gs_design_wlr . 47
gs_info_ahr . 50
gs_info_combo . 52
gs_info_rd . 53
gs_info_wlr . 56
gs_power_ahr . 57
gs_power_combo . 60
gs_power_npe . 62
gs_power_rd . 67
gs_power_wlr . 71
gs_spending_bound . 76
gs_spending_combo . 78
gs_update_ahr . 80
ppwe . 84
pw_info . 86
s2pwe . 87
summary.fixed_design . 88
to_integer . 93
wlr_weight . 95

Index 99

ahr 3

ahr Average hazard ratio under non-proportional hazards

Description

Provides a geometric average hazard ratio under various non-proportional hazards assumptions for
either single or multiple strata studies. The piecewise exponential distribution allows a simple
method to specify a distribution and enrollment pattern where the enrollment, failure and dropout
rates changes over time.

Usage

ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
total_duration = 30,
ratio = 1

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

total_duration Total follow-up from start of enrollment to data cutoff; this can be a single value
or a vector of positive numbers.

ratio Ratio of experimental to control randomization.

Value

A data frame with time (from total_duration), ahr (average hazard ratio), n (sample size), event
(expected number of events), info (information under given scenarios), and info0 (information
under related null hypothesis) for each value of total_duration input.

Specification

• Validate if input enrollment rate contains stratum column.

• Validate if input enrollment rate contains total duration column.

• Validate if input enrollment rate contains rate column.

• Validate if input failure rate contains stratum column.

• Validate if input failure rate contains duration column.

• Validate if input failure rate contains failure rate column.

• Validate if input failure rate contains hazard ratio column.

• Validate if input failure rate contains dropout rate column.

4 ahr_blinded

• Validate if input trial total follow-up (total duration) is a non-empty vector of positive integers.

• Validate if strata is the same in enrollment rate and failure rate.

• Compute the proportion in each group.

• Compute the expected events by treatment groups, stratum and time period.

• Calculate the expected number of events for all time points in the total duration and for all
stratification variables.

– Compute the expected events in for each strata.

* Combine the expected number of events of all stratification variables.

* Recompute events, hazard ratio and information under the given scenario of the com-
bined data for each strata.

– Combine the results for all time points by summarizing the results by adding up the
number of events, information under the null and the given scenarios.

• Return a data frame of overall event count, statistical information and average hazard ratio of
each value in total_duration.

• Calculation of ahr for different design scenarios, and the comparison to the simulation studies
are defined in vignette/AHRVignette.Rmd.

Examples

Example 1: default
ahr()

Example 2: default with multiple analysis times (varying total_duration)
ahr(total_duration = c(15, 30))

Example 3: stratified population
enroll_rate <- define_enroll_rate(

stratum = c(rep("Low", 2), rep("High", 3)),
duration = c(2, 10, 4, 4, 8),
rate = c(5, 10, 0, 3, 6)

)
fail_rate <- define_fail_rate(

stratum = c(rep("Low", 2), rep("High", 2)),
duration = c(1, Inf, 1, Inf),
fail_rate = c(.1, .2, .3, .4),
dropout_rate = .001,
hr = c(.9, .75, .8, .6)

)
ahr(enroll_rate = enroll_rate, fail_rate = fail_rate, total_duration = c(15, 30))

ahr_blinded Blinded estimation of average hazard ratio

ahr_blinded 5

Description

Based on blinded data and assumed hazard ratios in different intervals, compute a blinded estimate
of average hazard ratio (AHR) and corresponding estimate of statistical information. This function
is intended for use in computing futility bounds based on spending assuming the input hazard ratio
(hr) values for intervals specified here.

Usage

ahr_blinded(
surv = survival::Surv(time = simtrial::ex1_delayed_effect$month, event =
simtrial::ex1_delayed_effect$evntd),

intervals = c(3, Inf),
hr = c(1, 0.6),
ratio = 1

)

Arguments

surv Input survival object (see survival::Surv()); note that only 0 = censored, 1 =
event for survival::Surv().

intervals Vector containing positive values indicating interval lengths where the exponen-
tial rates are assumed. Note that a final infinite interval is added if any events
occur after the final interval specified.

hr Vector of hazard ratios assumed for each interval.

ratio Ratio of experimental to control randomization.

Value

A tibble with one row containing

• ahr - Blinded average hazard ratio based on assumed period-specific hazard ratios input in
fail_rate and observed events in the corresponding intervals.

• event - Total observed number of events.

• info0 - Information under related null hypothesis.

• theta - Natural parameter for group sequential design representing expected incremental drift
at all analyses.

Specification

• Validate input hr is a numeric vector.

• Validate input hr is non-negative.

• Validate input intervals is a numeric vector > 0.

• Set final value in intervals to Inf

• Validate that hr and intervals have same length.

• For input time-to-event data, count number of events in each input interval by stratum.

• Compute the blinded estimate of average hazard ratio.

6 as_gt

• Compute adjustment for information.

• Return a tibble of the sum of events, average hazard ratio, blinded average hazard ratio, and
the information.

Examples

ahr_blinded(
surv = survival::Surv(
time = simtrial::ex2_delayed_effect$month,
event = simtrial::ex2_delayed_effect$evntd

),
intervals = c(4, 100),
hr = c(1, .55),
ratio = 1

)

as_gt Convert summary table of a fixed or group sequential design object to
a gt object

Description

Convert summary table of a fixed or group sequential design object to a gt object

Usage

as_gt(x, ...)

S3 method for class 'fixed_design'
as_gt(x, title = NULL, footnote = NULL, ...)

S3 method for class 'gs_design'
as_gt(
x,
title = NULL,
subtitle = NULL,
colname_spanner = "Cumulative boundary crossing probability",
colname_spannersub = c("Alternate hypothesis", "Null hypothesis"),
footnote = NULL,
display_bound = c("Efficacy", "Futility"),
display_columns = NULL,
display_inf_bound = FALSE,
...

)

as_gt 7

Arguments

x A summary object of a fixed or group sequential design.

... Additional arguments (not used).

title A string to specify the title of the gt table.

footnote A list containing content, location, and attr. content is a vector of string
to specify the footnote text; location is a vector of string to specify the loca-
tions to put the superscript of the footnote index; attr is a vector of string to
specify the attributes of the footnotes, for example, c("colname", "title",
"subtitle", "analysis", "spanner"); users can use the functions in the gt
package to customize the table.

subtitle A string to specify the subtitle of the gt table.
colname_spanner

A string to specify the spanner of the gt table.
colname_spannersub

A vector of strings to specify the spanner details of the gt table.

display_bound A vector of strings specifying the label of the bounds. The default is c("Efficacy",
"Futility").

display_columns

A vector of strings specifying the variables to be displayed in the summary table.
display_inf_bound

Logical, whether to display the +/-inf bound.

Value

A gt_tbl object.

Examples

library(dplyr)

Enrollment rate
enroll_rate <- define_enroll_rate(

duration = 18,
rate = 20

)

Failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
dropout_rate = .001,
hr = c(1, .6)

)

Study duration in months
study_duration <- 36

Experimental / Control randomization ratio

8 as_gt

ratio <- 1

1-sided Type I error
alpha <- 0.025

Type II error (1 - power)
beta <- 0.1

Example 1 ----
fixed_design_ahr(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>%
summary() %>%
as_gt()

Example 2 ----
fixed_design_fh(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>%
summary() %>%
as_gt()

library(dplyr)
Example 1 ----
The default output

gs_design_ahr() %>%
summary() %>%
as_gt()

gs_power_ahr() %>%
summary() %>%
as_gt()

gs_design_wlr() %>%
summary() %>%
as_gt()

gs_power_wlr() %>%
summary() %>%
as_gt()

gs_power_combo() %>%
summary() %>%
as_gt()

gs_design_rd() %>%
summary() %>%

as_gt 9

as_gt()

gs_power_rd() %>%
summary() %>%
as_gt()

Example 2 ----
Usage of title = ..., subtitle = ...
to edit the title/subtitle
gs_power_wlr() %>%

summary() %>%
as_gt(

title = "Bound Summary",
subtitle = "from gs_power_wlr"

)

Example 3 ----
Usage of colname_spanner = ..., colname_spannersub = ...
to edit the spanner and its sub-spanner
gs_power_wlr() %>%

summary() %>%
as_gt(

colname_spanner = "Cumulative probability to cross boundaries",
colname_spannersub = c("under H1", "under H0")

)

Example 4 ----
Usage of footnote = ...
to edit the footnote
gs_power_wlr() %>%

summary() %>%
as_gt(

footnote = list(
content = c(

"approximate weighted hazard ratio to cross bound.",
"wAHR is the weighted AHR.",
"the crossing probability.",
"this table is generated by gs_power_wlr."

),
location = c("~wHR at bound", NA, NA, NA),
attr = c("colname", "analysis", "spanner", "title")

)
)

Example 5 ----
Usage of display_bound = ...
to either show efficacy bound or futility bound, or both(default)
gs_power_wlr() %>%

summary() %>%
as_gt(display_bound = "Efficacy")

Example 6 ----
Usage of display_columns = ...

10 as_rtf

to select the columns to display in the summary table
gs_power_wlr() %>%

summary() %>%
as_gt(display_columns = c("Analysis", "Bound", "Nominal p", "Z", "Probability"))

as_rtf Write summary table of a fixed or group sequential design object to an
RTF file

Description

Write summary table of a fixed or group sequential design object to an RTF file

Usage

as_rtf(x, ...)

S3 method for class 'fixed_design'
as_rtf(
x,
title = NULL,
footnote = NULL,
col_rel_width = NULL,
orientation = c("portrait", "landscape"),
text_font_size = 9,
file,
...

)

S3 method for class 'gs_design'
as_rtf(
x,
title = NULL,
subtitle = NULL,
colname_spanner = "Cumulative boundary crossing probability",
colname_spannersub = c("Alternate hypothesis", "Null hypothesis"),
footnote = NULL,
display_bound = c("Efficacy", "Futility"),
display_columns = NULL,
display_inf_bound = TRUE,
col_rel_width = NULL,
orientation = c("portrait", "landscape"),
text_font_size = 9,
file,
...

)

as_rtf 11

Arguments

x A summary object of a fixed or group sequential design.

... Additional arguments (not used).

title A string to specify the title of the RTF table.

footnote A list containing content, location, and attr. content is a vector of string
to specify the footnote text; location is a vector of string to specify the loca-
tions to put the superscript of the footnote index; attr is a vector of string to
specify the attributes of the footnotes, for example, c("colname", "title",
"subtitle", "analysis", "spanner"); users can use the functions in the gt
package to customize the table.

col_rel_width Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL
for equal column width.

orientation Orientation in ’portrait’ or ’landscape’.

text_font_size Text font size. To vary text font size by column, use numeric vector with length
of vector equal to number of columns displayed e.g. c(9,20,40).

file File path for the output.

subtitle A string to specify the subtitle of the RTF table.
colname_spanner

A string to specify the spanner of the RTF table.
colname_spannersub

A vector of strings to specify the spanner details of the RTF table.

display_bound A vector of strings specifying the label of the bounds. The default is c("Efficacy",
"Futility").

display_columns

A vector of strings specifying the variables to be displayed in the summary table.
display_inf_bound

Logical, whether to display the +/-inf bound.

Value

as_rtf() returns the input x invisibly.

Examples

library(dplyr)

Enrollment rate
enroll_rate <- define_enroll_rate(

duration = 18,
rate = 20

)

Failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,

12 as_rtf

dropout_rate = .001,
hr = c(1, .6)

)

Study duration in months
study_duration <- 36

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025

Type II error (1 - power)
beta <- 0.1

AHR ----
under fixed power
x <- fixed_design_ahr(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>% summary()
x %>% as_rtf(file = tempfile(fileext = ".rtf"))
x %>% as_rtf(title = "Fixed design", file = tempfile(fileext = ".rtf"))
x %>% as_rtf(

footnote = "Power computed with average hazard ratio method given the sample size",
file = tempfile(fileext = ".rtf")

)
x %>% as_rtf(text_font_size = 10, file = tempfile(fileext = ".rtf"))

FH ----
under fixed power
fixed_design_fh(

alpha = alpha, power = 1 - beta,
enroll_rate = enroll_rate, fail_rate = fail_rate,
study_duration = study_duration, ratio = ratio

) %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

#'

the default output
library(dplyr)

gs_design_ahr() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_ahr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

as_rtf 13

gs_design_wlr() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_combo() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_design_rd() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

gs_power_rd() %>%
summary() %>%
as_rtf(file = tempfile(fileext = ".rtf"))

usage of title = ..., subtitle = ...
to edit the title/subtitle
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(
title = "Bound Summary",
subtitle = "from gs_power_wlr",
file = tempfile(fileext = ".rtf")

)

usage of colname_spanner = ..., colname_spannersub = ...
to edit the spanner and its sub-spanner
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

colname_spanner = "Cumulative probability to cross boundaries",
colname_spannersub = c("under H1", "under H0"),
file = tempfile(fileext = ".rtf")

)

usage of footnote = ...
to edit the footnote
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

footnote = list(
content = c(

"approximate weighted hazard ratio to cross bound.",
"wAHR is the weighted AHR.",
"the crossing probability.",
"this table is generated by gs_power_wlr."

),

14 define_enroll_rate

location = c("~wHR at bound", NA, NA, NA),
attr = c("colname", "analysis", "spanner", "title")

),
file = tempfile(fileext = ".rtf")

)

usage of display_bound = ...
to either show efficacy bound or futility bound, or both(default)
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

display_bound = "Efficacy",
file = tempfile(fileext = ".rtf")

)

usage of display_columns = ...
to select the columns to display in the summary table
gs_power_wlr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1)) %>%

summary() %>%
as_rtf(

display_columns = c("Analysis", "Bound", "Nominal p", "Z", "Probability"),
file = tempfile(fileext = ".rtf")

)

define_enroll_rate Define enrollment rate

Description

Define the enrollment rate of subjects for a study as following a piecewise exponential distribution.

Usage

define_enroll_rate(duration, rate, stratum = "All")

Arguments

duration A numeric vector of ordered piecewise study duration interval.

rate A numeric vector of enrollment rate in each duration.

stratum A character vector of stratum name.

Details

The duration are ordered piecewise for a duration equal to ti − ti−1, where 0 = t0 < ti < · · · <
tM = ∞. The enrollment rates are defined in each duration with the same length.

For a study with multiple strata, different duration and rates can be specified in each stratum.

define_fail_rate 15

Value

An enroll_rate data frame.

Examples

Define enroll rate without stratum
define_enroll_rate(

duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

Define enroll rate with stratum
define_enroll_rate(

duration = rep(c(2, 2, 2, 18), 3),
rate = c((1:4) / 3, (1:4) / 2, (1:4) / 6),
stratum = c(array("High", 4), array("Moderate", 4), array("Low", 4))

)

define_fail_rate Define failure rate

Description

Define subject failure rate for a study with two treatment groups. Also supports stratified designs
that have different failure rates in each stratum.

Usage

define_fail_rate(duration, fail_rate, dropout_rate, hr = 1, stratum = "All")

Arguments

duration A numeric vector of ordered piecewise study duration interval.

fail_rate A numeric vector of failure rate in each duration in the control group.

dropout_rate A numeric vector of dropout rate in each duration.

hr A numeric vector of hazard ratio between treatment and control group.

stratum A character vector of stratum name.

Details

Define the failure and dropout rate of subjects for a study as following a piecewise exponential
distribution. The duration are ordered piecewise for a duration equal to ti − ti−1, where 0 = t0 <
ti < · · · < tM = ∞. The failure rate, dropout rate, and hazard ratio in a study duration can be
specified.

For a study with multiple strata, different duration, failure rates, dropout rates, and hazard ratios can
be specified in each stratum.

16 expected_accrual

Value

A fail_rate data frame.

Examples

Define enroll rate
define_fail_rate(

duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

Define enroll rate with stratum
define_fail_rate(

stratum = c(rep("Low", 2), rep("High", 2)),
duration = 1,
fail_rate = c(.1, .2, .3, .4),
dropout_rate = .001,
hr = c(.9, .75, .8, .6)

)

expected_accrual Piecewise constant expected accrual

Description

Computes the expected cumulative enrollment (accrual) given a set of piecewise constant enroll-
ment rates and times.

Usage

expected_accrual(
time = 0:24,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Arguments

time Times at which enrollment is to be computed.

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

Value

A vector with expected cumulative enrollment for the specified times.

expected_accrual 17

Specification

• Validate if input x is a vector of strictly increasing non-negative numeric elements.

• Validate if input enrollment rate is of type data.frame.

• Validate if input enrollment rate contains duration column.

• Validate if input enrollment rate contains rate column.

• Validate if rate in input enrollment rate is non-negative with at least one positive rate.

• Convert rates to step function.

• Add times where rates change to enrollment rates.

• Make a tibble of the input time points x, duration, enrollment rates at points, and expected
accrual.

• Extract the expected cumulative or survival enrollment.

• Return expected_accrual

Examples

library(tibble)

Example 1: default
expected_accrual()

Example 2: unstratified design
expected_accrual(

time = c(5, 10, 20),
enroll_rate = define_enroll_rate(

duration = c(3, 3, 18),
rate = c(5, 10, 20)

)
)

expected_accrual(
time = c(5, 10, 20),
enroll_rate = define_enroll_rate(

duration = c(3, 3, 18),
rate = c(5, 10, 20),

)
)

Example 3: stratified design
expected_accrual(

time = c(24, 30, 40),
enroll_rate = define_enroll_rate(

stratum = c("subgroup", "complement"),
duration = c(33, 33),
rate = c(30, 30)

)
)

Example 4: expected accrual over time

18 expected_event

Scenario 4.1: for the enrollment in the first 3 months,
it is exactly 3 * 5 = 15.
expected_accrual(

time = 3,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Scenario 4.2: for the enrollment in the first 6 months,
it is exactly 3 * 5 + 3 * 10 = 45.
expected_accrual(

time = 6,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Scenario 4.3: for the enrollment in the first 24 months,
it is exactly 3 * 5 + 3 * 10 + 18 * 20 = 405.
expected_accrual(

time = 24,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Scenario 4.4: for the enrollment after 24 months,
it is the same as that from the 24 months, since the enrollment is stopped.
expected_accrual(

time = 25,
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

Instead of compute the enrolled subjects one time point by one time point,
we can also compute it once.
expected_accrual(

time = c(3, 6, 24, 25),
enroll_rate = define_enroll_rate(duration = c(3, 3, 18), rate = c(5, 10, 20))

)

expected_event Expected events observed under piecewise exponential model

Description

Computes expected events over time and by strata under the assumption of piecewise constant en-
rollment rates and piecewise exponential failure and censoring rates. The piecewise exponential
distribution allows a simple method to specify a distribution and enrollment pattern where the en-
rollment, failure and dropout rates changes over time. While the main purpose may be to generate
a trial that can be analyzed at a single point in time or using group sequential methods, the routine
can also be used to simulate an adaptive trial design. The intent is to enable sample size calculations
under non-proportional hazards assumptions for stratified populations.

expected_event 19

Usage

expected_event(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18),

dropout_rate = 0.001),
total_duration = 25,
simple = TRUE

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

total_duration Total follow-up from start of enrollment to data cutoff.

simple If default (TRUE), return numeric expected number of events, otherwise a data
frame as described below.

Details

More periods will generally be supplied in output than those that are input. The intent is to enable
expected event calculations in a tidy format to maximize flexibility for a variety of purposes.

Value

The default when simple = TRUE is to return the total expected number of events as a real number.
Otherwise, when simple = FALSE, a data frame is returned with the following variables for each
period specified in fail_rate:

• t: start of period.

• fail_rate: failure rate during the period.

• event: expected events during the period.

The records in the returned data frame correspond to the input data frame fail_rate.

Specification

• Validate if input enrollment rate contains total duration column.

• Validate if input enrollment rate contains rate column.

• Validate if input failure rate contains duration column.

• Validate if input failure rate contains failure rate column.

• Validate if input failure rate contains dropout rate column.

• Validate if input trial total follow-up (total duration) is a non-empty vector of positive integers.

• Validate if input simple is logical.

20 expected_event

• Define a data frame with the start opening for enrollment at zero and cumulative duration.
Add the event (or failure) time corresponding to the start of the enrollment. Finally, add
the enrollment rate to the data frame corresponding to the start and end (failure) time. This
will be recursively used to calculate the expected number of events later. For details, see
vignette/eEventsTheory.Rmd

• Define a data frame including the cumulative duration of failure rates, the corresponding start
time of the enrollment, failure rate and dropout rates. For details, see vignette/eEventsTheory.Rmd

• Only consider the failure rates in the interval of the end failure rate and total duration.

• Compute the failure rates over time using stepfun which is used to group rows by periods
defined by fail_rate.

• Compute the dropout rate over time using stepfun.

• Compute the enrollment rate over time using stepfun. Details are available in vignette/eEventsTheory.Rmd.

• Compute expected events by interval at risk using the notations and descriptions in vignette/eEventsTheory.Rmd.

• Return expected_event

Examples

library(gsDesign2)

Default arguments, simple output (total event count only)
expected_event()

Event count by time period
expected_event(simple = FALSE)

Early cutoff
expected_event(total_duration = .5)

Single time period example
expected_event(

enroll_rate = define_enroll_rate(duration = 10, rate = 10),
fail_rate = define_fail_rate(duration = 100, fail_rate = log(2) / 6, dropout_rate = .01),
total_duration = 22,
simple = FALSE

)

Single time period example, multiple enrollment periods
expected_event(

enroll_rate = define_enroll_rate(duration = c(5, 5), rate = c(10, 20)),
fail_rate = define_fail_rate(duration = 100, fail_rate = log(2) / 6, dropout_rate = .01),
total_duration = 22, simple = FALSE

)

expected_time 21

expected_time Predict time at which a targeted event count is achieved

Description

expected_time() is made to match input format with ahr() and to solve for the time at which the
expected accumulated events is equal to an input target. Enrollment and failure rate distributions
are specified as follows. The piecewise exponential distribution allows a simple method to specify
a distribution and enrollment pattern where the enrollment, failure and dropout rates changes over
time.

Usage

expected_time(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9) * 5),
fail_rate = define_fail_rate(stratum = "All", duration = c(3, 100), fail_rate =

log(2)/c(9, 18), hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
target_event = 150,
ratio = 1,
interval = c(0.01, 100)

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

target_event The targeted number of events to be achieved.

ratio Experimental:Control randomization ratio.

interval An interval that is presumed to include the time at which expected event count
is equal to target_event.

Value

A data frame with Time (computed to match events in target_event), AHR (average hazard ratio),
Events (target_event input), info (information under given scenarios), and info0 (information
under related null hypothesis) for each value of total_duration input.

Specification

• Use root-finding routine with ‘AHR()‘ to find time at which targeted events accrue.

• Return a data frame with a single row with the output from ‘AHR()‘ got the specified output.

22 fixed_design_ahr

Examples

Example 1 ----
default

expected_time()

Example 2 ----
check that result matches a finding using AHR()
Start by deriving an expected event count
enroll_rate <- define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9) * 5)
fail_rate <- define_fail_rate(

duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)
total_duration <- 20
xx <- ahr(enroll_rate, fail_rate, total_duration)
xx

Next we check that the function confirms the timing of the final analysis.

expected_time(enroll_rate, fail_rate,
target_event = xx$event, interval = c(.5, 1.5) * xx$time

)

Example 3 ----
In this example, we verify `expected_time()` by `ahr()`.

x <- ahr(
enroll_rate = enroll_rate, fail_rate = fail_rate,
ratio = 1, total_duration = 20

)

cat("The number of events by 20 months is ", x$event, ".\n")

y <- expected_time(
enroll_rate = enroll_rate, fail_rate = fail_rate,
ratio = 1, target_event = x$event

)

cat("The time to get ", x$event, " is ", y$time, "months.\n")

fixed_design_ahr Fixed design under non-proportional hazards

fixed_design_ahr 23

Description

Computes fixed design sample size (given power) or power (given sample size) by:

• fixed_design_ahr() - Average hazard ratio method.

• fixed_design_fh() - Weighted logrank test with Fleming-Harrington weights (Farrington
and Manning, 1990).

• fixed_design_mb() - Weighted logrank test with Magirr-Burman weights.

• fixed_design_lf() - Lachin-Foulkes method (Lachin and Foulkes, 1986).

• fixed_design_maxcombo() - MaxCombo method.

• fixed_design_rmst() - RMST method.

• fixed_design_milestone() - Milestone method.

Additionally, fixed_design_rd() provides fixed design for binary endpoint with treatment effect
measuring in risk difference.

Usage

fixed_design_ahr(
enroll_rate,
fail_rate,
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
event = NULL

)

fixed_design_fh(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
rho = 0,
gamma = 0

)

fixed_design_lf(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate

)

24 fixed_design_ahr

fixed_design_maxcombo(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
rho = c(0, 0, 1),
gamma = c(0, 1, 0),
tau = rep(-1, 3)

)

fixed_design_mb(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,
enroll_rate,
fail_rate,
tau = 6,
w_max = Inf

)

fixed_design_milestone(
alpha = 0.025,
power = NULL,
ratio = 1,
enroll_rate,
fail_rate,
study_duration = 36,
tau = NULL

)

fixed_design_rd(
alpha = 0.025,
power = NULL,
ratio = 1,
p_c,
p_e,
rd0 = 0,
n = NULL

)

fixed_design_rmst(
alpha = 0.025,
power = NULL,
ratio = 1,
study_duration = 36,

fixed_design_ahr 25

enroll_rate,
fail_rate,
tau = NULL

)

Arguments

enroll_rate Enrollment rates.

fail_rate Failure and dropout rates.

alpha One-sided Type I error (strictly between 0 and 1).

power Power (NULL to compute power or strictly between 0 and 1 - alpha otherwise).

ratio Experimental:Control randomization ratio.

study_duration Study duration.

event Targeted event at each analysis.

rho A vector of numbers paring with gamma and tau for MaxCombo test.

gamma A vector of numbers paring with rho and tau for MaxCombo test.

tau Test parameter in RMST.

w_max Test parameter of Magirr-Burman method.

p_c A numerical value of the control arm rate.

p_e A numerical value of the experimental arm rate.

rd0 Risk difference under null hypothesis, default is 0.

n Sample size. If NULL with power input, the sample size will be computed to
achieve the targeted power

Value

A list of design characteristic summary.

Examples

AHR method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_ahr(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

26 fixed_design_ahr

Example 2: given sample size and compute power
x <- fixed_design_ahr(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

WLR test with FH weights ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_fh(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
rho = 1, gamma = 1

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_fh(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
rho = 1, gamma = 1

)
x %>% summary()

LF method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_lf(

fixed_design_ahr 27

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_lf(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36

)
x %>% summary()

MaxCombo test ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_maxcombo(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
rho = c(0, 0.5), gamma = c(0, 0), tau = c(-1, -1)

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_maxcombo(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

28 fixed_design_ahr

),
study_duration = 36,
rho = c(0, 0.5), gamma = c(0, 0), tau = c(-1, -1)

)
x %>% summary()

WLR test with MB weights ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_mb(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
tau = 4,
w_max = 2

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_mb(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36,
tau = 4,
w_max = 2

)
x %>% summary()

Milestone method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_milestone(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

fixed_design_ahr 29

),
study_duration = 36,
tau = 18

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_milestone(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36,
tau = 18

)
x %>% summary()

Binary endpoint with risk differences ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_rd(

alpha = 0.025, power = 0.9, p_c = .15, p_e = .1,
rd0 = 0, ratio = 1

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_rd(

alpha = 0.025, power = NULL, p_c = .15, p_e = .1,
rd0 = 0, n = 2000, ratio = 1

)
x %>% summary()

RMST method ----
library(dplyr)

Example 1: given power and compute sample size
x <- fixed_design_rmst(

alpha = .025, power = .9,
enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36,
tau = 18

30 gs_b

)
x %>% summary()

Example 2: given sample size and compute power
x <- fixed_design_rmst(

alpha = .025,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(
duration = 100,
fail_rate = log(2) / 12,
hr = .7,
dropout_rate = .001

),
study_duration = 36,
tau = 18

)
x %>% summary()

gs_b Default boundary generation

Description

gs_b() is the simplest version of a function to be used with the upper and lower arguments
in gs_power_npe() and gs_design_npe() or the upper_bound and lower_bound arguments in
gs_prob_combo() and pmvnorm_combo(). It simply returns the vector of Z-values in the input vec-
tor par or, if k is specified, par[k] is returned. Note that if bounds need to change with changing
information at analyses, gs_b() should not be used. For instance, for spending function bounds use
gs_spending_bound().

Usage

gs_b(par = NULL, k = NULL, ...)

Arguments

par For gs_b(), this is just Z-values for the boundaries; can include infinite values.
k Is NULL (default), return par, else return par[k].
... Further arguments passed to or from other methods.

Value

Returns the vector input par if k is NULL, otherwise, par[k].

Specification

• Validate if the input k is null as default.
– If the input k is null as default, return the whole vector of Z-values of the boundaries.
– If the input k is not null, return the corresponding boundary in the vector of Z-values.

• Return a vector of boundaries.

gs_create_arm 31

Examples

Simple: enter a vector of length 3 for bound
gs_b(par = 4:2)

2nd element of par
gs_b(par = 4:2, k = 2)

Generate an efficacy bound using a spending function
Use Lan-DeMets spending approximation of O'Brien-Fleming bound
as 50%, 75% and 100% of final spending
Information fraction
IF <- c(.5, .75, 1)
gs_b(par = gsDesign::gsDesign(

alpha = .025, k = length(IF),
test.type = 1, sfu = gsDesign::sfLDOF,
timing = IF

)$upper$bound)

gs_create_arm Create npsurvSS arm object

Description

Create npsurvSS arm object

Usage

gs_create_arm(enroll_rate, fail_rate, ratio, total_time = 1e+06)

Arguments

enroll_rate Enrollment rates from define_enroll_rate().

fail_rate Failure and dropout rates from define_fail_rate().

ratio Experimental:Control randomization ratio.

total_time Total analysis time.

Value

A list of the two arms.

Specification

• Validate if there is only one stratum.

• Calculate the accrual duration.

• calculate the accrual intervals.

• Calculate the accrual parameter as the proportion of enrollment rate*duration.

32 gs_design_ahr

• Set cure proportion to zero.

• set survival intervals and shape.

• Set fail rate in fail_rate to the Weibull scale parameter for the survival distribution in the arm
0.

• Set the multiplication of hazard ratio and fail rate to the Weibull scale parameter for the sur-
vival distribution in the arm 1.

• Set the shape parameter to one as the exponential distribution for shape parameter for the loss
to follow-up distribution

• Set the scale parameter to one as the scale parameter for the loss to follow-up distribution
since the exponential distribution is supported only

• Create arm 0 using npsurvSS::create_arm() using the parameters for arm 0.

• Create arm 1 using npsurvSS::create_arm() using the parameters for arm 1.

• Set the class of the two arms.

• Return a list of the two arms.

Examples

enroll_rate <- define_enroll_rate(
duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_create_arm(enroll_rate, fail_rate, ratio = 1)

gs_design_ahr Group sequential design using average hazard ratio under non-
proportional hazards

Description

Group sequential design using average hazard ratio under non-proportional hazards

Usage

gs_design_ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),

gs_design_ahr 33

alpha = 0.025,
beta = 0.1,
info_frac = NULL,
analysis_time = 36,
ratio = 1,
binding = FALSE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = alpha),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = beta),
h1_spending = TRUE,
test_upper = TRUE,
test_lower = TRUE,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
r = 18,
tol = 1e-06,
interval = c(0.01, 1000)

)

Arguments

enroll_rate Enrollment rates.

fail_rate Failure and dropout rates.

alpha One-sided Type I error.

beta Type II error.

info_frac Targeted information fraction at each analysis.

analysis_time Minimum time of analysis.

ratio Experimental:Control randomization ratio (not yet implemented).

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

upar Parameters passed to upper.

lower Function to compute lower bound.

lpar Parameters passed to lower.

h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-
put fail_rate) if spending is used for lower bound.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

info_scale Information scale for calculation. Options are:

34 gs_design_ahr

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

Details

To be added.

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Validate if input analysis_time is a positive number or positive increasing sequence.

• Validate if input info_frac is a positive number or positive increasing sequence on (0, 1] with
final value of 1.

• Validate if input info_frac and analysis_time have the same length if both have length > 1.

• Get information at input analysis_time

– Use gs_info_ahr() to get the information and effect size based on AHR approximation.
– Extract the final event.
– Check if input If needed for (any) interim analysis timing.

• Add the analysis column to the information at input analysis_time.

• Add the sample size column to the information at input analysis_time using expected_accural().

• Get sample size and bounds using gs_design_npe() and save them to bounds.

• Add Time, Events, AHR, N that have already been calculated to the bounds.

• Return a list of design enrollment, failure rates, and bounds.

Examples

library(gsDesign)
library(gsDesign2)
library(dplyr)

Example 1 ----
call with defaults
gs_design_ahr()

Example 2 ----

gs_design_ahr 35

Single analysis
gs_design_ahr(analysis_time = 40)

Example 3 ----
Multiple analysis_time
gs_design_ahr(analysis_time = c(12, 24, 36))

Example 4 ----
Specified information fraction

gs_design_ahr(info_frac = c(.25, .75, 1), analysis_time = 36)

Example 5 ----
multiple analysis times & info_frac
driven by times
gs_design_ahr(info_frac = c(.25, .75, 1), analysis_time = c(12, 25, 36))
driven by info_frac

gs_design_ahr(info_frac = c(1 / 3, .8, 1), analysis_time = c(12, 25, 36))

Example 6 ----
2-sided symmetric design with O'Brien-Fleming spending

gs_design_ahr(
analysis_time = c(12, 24, 36),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
h1_spending = FALSE

)

2-sided asymmetric design with O'Brien-Fleming upper spending
Pocock lower spending under H1 (NPH)

gs_design_ahr(
analysis_time = c(12, 24, 36),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDPocock, total_spend = 0.1, param = NULL, timing = NULL),
h1_spending = TRUE

)

Example 7 ----

gs_design_ahr(
alpha = 0.0125,

36 gs_design_combo

analysis_time = c(12, 24, 36),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.0125, param = NULL, timing = NULL),
lower = gs_b,
lpar = rep(-Inf, 3)

)

gs_design_ahr(
alpha = 0.0125,
analysis_time = c(12, 24, 36),
upper = gs_b,
upar = gsDesign::gsDesign(

k = 3, test.type = 1, n.I = c(.25, .75, 1),
sfu = sfLDOF, sfupar = NULL, alpha = 0.0125

)$upper$bound,
lower = gs_b,
lpar = rep(-Inf, 3)

)

gs_design_combo Group sequential design using MaxCombo test under non-
proportional hazards

Description

Group sequential design using MaxCombo test under non-proportional hazards

Usage

gs_design_combo(
enroll_rate = define_enroll_rate(duration = 12, rate = 500/12),
fail_rate = define_fail_rate(duration = c(4, 100), fail_rate = log(2)/15, hr = c(1,

0.6), dropout_rate = 0.001),
fh_test = rbind(data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3,
analysis_time = c(12, 24, 36)), data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1,
test = 2:3, analysis = 3, analysis_time = 36)),

ratio = 1,
alpha = 0.025,
beta = 0.2,
binding = FALSE,
upper = gs_b,
upar = c(3, 2, 1),
lower = gs_b,
lpar = c(-1, 0, 1),
algorithm = mvtnorm::GenzBretz(maxpts = 1e+05, abseps = 1e-05),
n_upper_bound = 1000,
...

)

gs_design_combo 37

Arguments

enroll_rate Enrollment rates.

fail_rate Failure and dropout rates.

fh_test A data frame to summarize the test in each analysis. See examples for its data
structure.

ratio Experimental:Control randomization ratio (not yet implemented).

alpha One-sided Type I error.

beta Type II error.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

upar Parameters passed to upper.

lower Function to compute lower bound.

lpar Parameters passed to lower.

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to
be used as well as the associated hyper parameters.

n_upper_bound A numeric value of upper limit of sample size.

... Additional parameters passed to mvtnorm::pmvnorm.

Value

A list with input parameters, enrollment rate, analysis, and bound.

Examples

The example is slow to run
library(dplyr)
library(mvtnorm)
library(gsDesign)

enroll_rate <- define_enroll_rate(
duration = 12,
rate = 500 / 12

)

fail_rate <- define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

fh_test <- rbind(
data.frame(

rho = 0, gamma = 0, tau = -1,
test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)

),

38 gs_design_combo

data.frame(
rho = c(0, 0.5), gamma = 0.5, tau = -1,
test = 2:3, analysis = 3, analysis_time = 36

)
)

x <- gsSurv(
k = 3,
test.type = 4,
alpha = 0.025,
beta = 0.2,
astar = 0,
timing = 1,
sfu = sfLDOF,
sfupar = 0,
sfl = sfLDOF,
sflpar = 0,
lambdaC = 0.1,
hr = 0.6,
hr0 = 1,
eta = 0.01,
gamma = 10,
R = 12,
S = NULL,
T = 36,
minfup = 24,
ratio = 1

)

Example 1 ----
User-defined boundary

gs_design_combo(
enroll_rate,
fail_rate,
fh_test,
alpha = 0.025, beta = 0.2,
ratio = 1,
binding = FALSE,
upar = x$upper$bound,
lpar = x$lower$bound

)

Example 2 ----

Boundary derived by spending function
gs_design_combo(

enroll_rate,
fail_rate,
fh_test,
alpha = 0.025,
beta = 0.2,
ratio = 1,

gs_design_npe 39

binding = FALSE,
upper = gs_spending_combo,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025), # alpha spending
lower = gs_spending_combo,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2), # beta spending

)

gs_design_npe Group sequential design computation with non-constant effect and in-
formation

Description

Derives group sequential design size, bounds and boundary crossing probabilities based on propor-
tionate information and effect size at analyses. It allows a non-constant treatment effect over time,
but also can be applied for the usual homogeneous effect size designs. It requires treatment effect
and proportionate statistical information at each analysis as well as a method of deriving bounds,
such as spending. The routine enables two things not available in the gsDesign package:

1. non-constant effect, 2) more flexibility in boundary selection. For many applications, the non-
proportional-hazards design function gs_design_nph() will be used; it calls this function.
Initial bound types supported are 1) spending bounds,

2. fixed bounds, and 3) Haybittle-Peto-like bounds. The requirement is to have a boundary up-
date method that can each bound without knowledge of future bounds. As an example, bounds
based on conditional power that require knowledge of all future bounds are not supported by
this routine; a more limited conditional power method will be demonstrated. Boundary family
designs Wang-Tsiatis designs including the original (non-spending-function-based) O’Brien-
Fleming and Pocock designs are not supported by gs_power_npe().

Usage

gs_design_npe(
theta = 0.1,
theta0 = NULL,
theta1 = NULL,
info = 1,
info0 = NULL,
info1 = NULL,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
alpha = 0.025,
beta = 0.1,
upper = gs_b,
upar = qnorm(0.975),
lower = gs_b,
lpar = -Inf,
test_upper = TRUE,

40 gs_design_npe

test_lower = TRUE,
binding = FALSE,
r = 18,
tol = 1e-06

)

Arguments

theta Natural parameter for group sequential design representing expected incremen-
tal drift at all analyses; used for power calculation.

theta0 Natural parameter used for upper bound spending; if NULL, this will be set to 0.

theta1 Natural parameter used for lower bound spending; if NULL, this will be set to
theta which yields the usual beta-spending. If set to 0, spending is 2-sided
under null hypothesis.

info Proportionate statistical information at all analyses for input theta.

info0 Proportionate statistical information under null hypothesis, if different than al-
ternative; impacts null hypothesis bound calculation.

info1 Proportionate statistical information under alternate hypothesis; impacts null hy-
pothesis bound calculation.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

alpha One-sided Type I error.

beta Type II error.

upper Function to compute upper bound.

upar Parameters passed to the function provided in upper.

lower Function to compare lower bound.

lpar Parameters passed to the function provided in lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicates no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

gs_design_npe 41

Details

The inputs info and info0 should be vectors of the same length with increasing positive numbers.
The design returned will change these by some constant scale factor to ensure the design has power
1 - beta. The bound specifications in upper, lower, upar, lpar will be used to ensure Type I error
and other boundary properties are as specified.

Value

A tibble with columns analysis, bound, z, probability, theta, info, info0.

Specification

• Validate if input info is a numeric vector or NULL, if non-NULL validate if it is strictly
increasing and positive.

• Validate if input info0 is a numeric vector or NULL, if non-NULL validate if it is strictly
increasing and positive.

• Validate if input info1 is a numeric vector or NULL, if non-NULL validate if it is strictly
increasing and positive.

• Validate if input theta is a real vector and has the same length as info.

• Validate if input theta1 is a real vector and has the same length as info.

• Validate if input test_upper and test_lower are logical and have the same length as info.

• Validate if input test_upper value is TRUE.

• Validate if input alpha and beta are positive and of length one.

• Validate if input alpha and beta are from the unit interval and alpha is smaller than beta.

• Initialize bounds, numerical integration grids, boundary crossing probabilities.

• Compute fixed sample size for desired power and Type I error.

• Find an interval for information inflation to give correct power using gs_power_npe().

•

• If there is no interim analysis, return a tibble including Analysis time, upper bound, Z-value,
Probability of crossing bound, theta, info0 and info1.

• If the design is a group sequential design, return a tibble of Analysis, Bound, Z, Probability,
theta, info, info0.

Author(s)

Keaven Anderson <keaven_anderson@merck.com>

Examples

library(dplyr)
library(gsDesign)

Example 1 ----
Single analysis
Lachin book p 71 difference of proportions example

42 gs_design_npe

pc <- .28 # Control response rate
pe <- .40 # Experimental response rate
p0 <- (pc + pe) / 2 # Ave response rate under H0

Information per increment of 1 in sample size
info0 <- 1 / (p0 * (1 - p0) * 4)
info <- 1 / (pc * (1 - pc) * 2 + pe * (1 - pe) * 2)

Result should round up to next even number = 652
Divide information needed under H1 by information per patient added
gs_design_npe(theta = pe - pc, info = info, info0 = info0)

Example 2 ----
Fixed bound
x <- gs_design_npe(

alpha = 0.0125,
theta = c(.1, .2, .3),
info = (1:3) * 80,
info0 = (1:3) * 80,
upper = gs_b,
upar = gsDesign::gsDesign(k = 3, sfu = gsDesign::sfLDOF, alpha = 0.0125)$upper$bound,
lower = gs_b,
lpar = c(-1, 0, 0)

)
x

Same upper bound; this represents non-binding Type I error and will total 0.025
gs_power_npe(

theta = rep(0, 3),
info = (x %>% filter(bound == "upper"))$info,
upper = gs_b,
upar = (x %>% filter(bound == "upper"))$z,
lower = gs_b,
lpar = rep(-Inf, 3)

)

Example 3 ----
Spending bound examples
Design with futility only at analysis 1; efficacy only at analyses 2, 3
Spending bound for efficacy; fixed bound for futility
NOTE: test_upper and test_lower DO NOT WORK with gs_b; must explicitly make bounds infinite
test_upper and test_lower DO WORK with gs_spending_bound
gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
info0 = (1:3) * 40,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_b,
lpar = c(-1, -Inf, -Inf),
test_upper = c(FALSE, TRUE, TRUE)

)

gs_design_npe 43

one can try `info_scale = "h1_info"` or `info_scale = "h0_info"` here
gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
info0 = (1:3) * 30,
info_scale = "h1_info",
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_b,
lpar = c(-1, -Inf, -Inf),
test_upper = c(FALSE, TRUE, TRUE)

)

Example 4 ----
Spending function bounds
2-sided asymmetric bounds
Lower spending based on non-zero effect
gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
info0 = (1:3) * 30,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfHSD, total_spend = 0.1, param = -1, timing = NULL)

)

Example 5 ----
Two-sided symmetric spend, O'Brien-Fleming spending
Typically, 2-sided bounds are binding
xx <- gs_design_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

)
xx

Re-use these bounds under alternate hypothesis
Always use binding = TRUE for power calculations
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
binding = TRUE,
upper = gs_b,
lower = gs_b,
upar = (xx %>% filter(bound == "upper"))$z,
lpar = -(xx %>% filter(bound == "upper"))$z

)

44 gs_design_rd

gs_design_rd Group sequential design of binary outcome measuring in risk differ-
ence

Description

Group sequential design of binary outcome measuring in risk difference

Usage

gs_design_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
info_frac = 1:3/3,
rd0 = 0,
alpha = 0.025,
beta = 0.1,
ratio = 1,
stratum_prev = NULL,
weight = c("unstratified", "ss", "invar"),
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(0.1), rep(-Inf, 2)),
test_upper = TRUE,
test_lower = TRUE,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
binding = FALSE,
r = 18,
tol = 1e-06,
h1_spending = TRUE

)

Arguments

p_c Rate at the control group.

p_e Rate at the experimental group.

info_frac Statistical information fraction.

rd0 Treatment effect under super-superiority designs, the default is 0.

alpha One-sided Type I error.

beta Type II error.

ratio Experimental:Control randomization ratio (not yet implemented).

stratum_prev Randomization ratio of different stratum. If it is unstratified design then NULL.
Otherwise it is a tibble containing two columns (stratum and prevalence).

weight The weighting scheme for stratified population.

gs_design_rd 45

upper Function to compute upper bound.

lower Function to compute lower bound.

upar Parameters passed to upper.

lpar Parameters passed to lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value of FALSE indicates no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-
put fail_rate) if spending is used for lower bound.

Details

To be added.

Value

A list with input parameters, analysis, and bound.

Examples

library(gsDesign)

Example 1 ----
unstratified group sequential design
x <- gs_design_rd(

p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
info_frac = c(0.7, 1),
rd0 = 0,
alpha = .025,
beta = .1,
ratio = 1,

46 gs_design_rd

stratum_prev = NULL,
weight = "unstratified",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 2, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

y <- gs_power_rd(
p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
n = tibble::tibble(stratum = "All", n = x$analysis$n, analysis = 1:2),
rd0 = 0,
ratio = 1,
weight = "unstratified",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 2, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

The above 2 design share the same power with the same sample size and treatment effect
x$bound$probability[x$bound$bound == "upper" & x$bound$analysis == 2]
y$bound$probability[y$bound$bound == "upper" & y$bound$analysis == 2]

Example 2 ----
stratified group sequential design
gs_design_rd(

p_c = tibble::tibble(
stratum = c("biomarker positive", "biomarker negative"),
rate = c(.2, .25)

),
p_e = tibble::tibble(

stratum = c("biomarker positive", "biomarker negative"),
rate = c(.15, .22)

),
info_frac = c(0.7, 1),
rd0 = 0,
alpha = .025,
beta = .1,
ratio = 1,
stratum_prev = tibble::tibble(

stratum = c("biomarker positive", "biomarker negative"),
prevalence = c(.4, .6)

),
weight = "ss",
upper = gs_spending_bound, lower = gs_b,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lpar = rep(-Inf, 2)

)

gs_design_wlr 47

gs_design_wlr Group sequential design using weighted log-rank test under non-
proportional hazards

Description

Group sequential design using weighted log-rank test under non-proportional hazards

Usage

gs_design_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = tibble(stratum = "All", duration = c(3, 100), fail_rate = log(2)/c(9, 18),

hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),
weight = wlr_weight_fh,
approx = "asymptotic",
alpha = 0.025,
beta = 0.1,
ratio = 1,
info_frac = NULL,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
analysis_time = 36,
binding = FALSE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = alpha),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = beta),
test_upper = TRUE,
test_lower = TRUE,
h1_spending = TRUE,
r = 18,
tol = 1e-06,
interval = c(0.01, 1000)

)

Arguments

enroll_rate Enrollment rates.

fail_rate Failure and dropout rates.

weight Weight of weighted log rank test:

• "1" = unweighted.
• "n" = Gehan-Breslow.
• "sqrtN" = Tarone-Ware.
• "FH_p[a]_q[b]" = Fleming-Harrington with p=a and q=b.

approx Approximate estimation method for Z statistics.

48 gs_design_wlr

• "event_driven" = only work under proportional hazard model with log
rank test.

• "asymptotic".

alpha One-sided Type I error.

beta Type II error.

ratio Experimental:Control randomization ratio (not yet implemented).

info_frac Targeted information fraction at each analysis.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

analysis_time Minimum time of analysis.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

upar Parameters passed to upper.

lower Function to compute lower bound.

lpar Parameters passed to lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (in-
put fail_rate) if spending is used for lower bound.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Validate if input analysis_time is a positive number or a positive increasing sequence.

• Validate if input info_frac is a positive number or positive increasing sequence on (0, 1] with
final value of 1.

gs_design_wlr 49

• Validate if inputs info_frac and analysis_time have the same length if both have length > 1.

• Compute information at input analysis_time using gs_info_wlr().

• Compute sample size and bounds using gs_design_npe().

• Return a list of design enrollment, failure rates, and bounds.

Examples

library(dplyr)
library(mvtnorm)
library(gsDesign)
library(gsDesign2)

set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 1)

set failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

Example 1 ----
Information fraction driven design
gs_design_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
ratio = 1,
alpha = 0.025, beta = 0.2,
weight = function(x, arm0, arm1) {
wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = 0.5)

},
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2),
analysis_time = 36,
info_frac = 1:3/3

)

Example 2 ----
Calendar time driven design
gs_design_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
ratio = 1,
alpha = 0.025, beta = 0.2,
weight = function(x, arm0, arm1) {

wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = 0.5)
},
upper = gs_spending_bound,

50 gs_info_ahr

upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2),
analysis_time = 1:3*12,
info_frac = NULL

)

Example 3 ----
Both calendar time and information fraction driven design
gs_design_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
ratio = 1,
alpha = 0.025, beta = 0.2,
weight = function(x, arm0, arm1) {

wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = 0.5)
},
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2),
analysis_time = 1:3*12,
info_frac = c(0.3, 0.7, 1)

)

gs_info_ahr Information and effect size based on AHR approximation

Description

Based on piecewise enrollment rate, failure rate, and dropout rates computes approximate informa-
tion and effect size using an average hazard ratio model.

Usage

gs_info_ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
ratio = 1,
event = NULL,
analysis_time = NULL,
interval = c(0.01, 1000)

)

Arguments

enroll_rate Enrollment rates from define_enroll_rate().

fail_rate Failure and dropout rates from define_fail_rate().

gs_info_ahr 51

ratio Experimental:Control randomization ratio.

event Targeted minimum events at each analysis.

analysis_time Targeted minimum study duration at each analysis.

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

Details

The ahr() function computes statistical information at targeted event times. The expected_time()
function is used to get events and average HR at targeted analysis_time.

Value

A data frame with columns analysis, time, ahr, event, theta, info, info0. The columns info
and info0 contain statistical information under H1, H0, respectively. For analysis k, time[k] is the
maximum of analysis_time[k] and the expected time required to accrue the targeted event[k].
ahr is the expected average hazard ratio at each analysis.

Specification

• Validate if input event is a numeric value vector or a vector with increasing values.

• Validate if input analysis_time is a numeric value vector or a vector with increasing values.

• Validate if inputs event and analysis_time have the same length if they are both specified.

• Compute average hazard ratio:

– If analysis_time is specified, calculate average hazard ratio using ahr().
– If event is specified, calculate average hazard ratio using expected_time().

• Return a data frame of Analysis, Time, AHR, Events, theta, info, info0.

Examples

library(gsDesign)
library(gsDesign2)

Example 1 ----

Only put in targeted events
gs_info_ahr(event = c(30, 40, 50))

Example 2 ----
Only put in targeted analysis times
gs_info_ahr(analysis_time = c(18, 27, 36))

Example 3 ----

Some analysis times after time at which targeted event accrue
Check that both Time >= input analysis_time and event >= input event
gs_info_ahr(event = c(30, 40, 50), analysis_time = c(16, 19, 26))

52 gs_info_combo

gs_info_ahr(event = c(30, 40, 50), analysis_time = c(14, 20, 24))

gs_info_combo Information and effect size for MaxCombo test

Description

Information and effect size for MaxCombo test

Usage

gs_info_combo(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
ratio = 1,
event = NULL,
analysis_time = NULL,
rho,
gamma,
tau = rep(-1, length(rho)),
approx = "asymptotic"

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

ratio Experimental:Control randomization ratio (not yet implemented).

event Targeted events at each analysis.

analysis_time Minimum time of analysis.

rho Weighting parameters.

gamma Weighting parameters.

tau Weighting parameters.

approx Approximation method.

Value

A tibble with columns as test index, analysis index, analysis time, sample size, number of events,
ahr, delta, sigma2, theta, and statistical information.

Examples

gs_info_combo(rho = c(0, 0.5), gamma = c(0.5, 0), analysis_time = c(12, 24))

gs_info_rd 53

gs_info_rd Information and effect size under risk difference

Description

Information and effect size under risk difference

Usage

gs_info_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
n = tibble::tibble(stratum = "All", n = c(100, 200, 300), analysis = 1:3),
rd0 = 0,
ratio = 1,
weight = c("unstratified", "ss", "invar")

)

Arguments

p_c Rate at the control group.

p_e Rate at the experimental group.

n Sample size.

rd0 The risk difference under H0.

ratio Experimental:Control randomization ratio.

weight Weighting method, can be "unstratified", "ss", or "invar".

Value

A tibble with columns as analysis index, sample size, risk difference, risk difference under null
hypothesis, theta1 (standardized treatment effect under alternative hypothesis), theta0 (standardized
treatment effect under null hypothesis), and statistical information.

Examples

Example 1 ----
unstratified case with H0: rd0 = 0
gs_info_rd(

p_c = tibble::tibble(stratum = "All", rate = .15),
p_e = tibble::tibble(stratum = "All", rate = .1),
n = tibble::tibble(stratum = "All", n = c(100, 200, 300), analysis = 1:3),
rd0 = 0,
ratio = 1

)

Example 2 ----
unstratified case with H0: rd0 != 0

54 gs_info_rd

gs_info_rd(
p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
n = tibble::tibble(stratum = "All", n = c(100, 200, 300), analysis = 1:3),
rd0 = 0.005,
ratio = 1

)

Example 3 ----
stratified case under sample size weighting and H0: rd0 = 0
gs_info_rd(

p_c = tibble::tibble(stratum = c("S1", "S2", "S3"), rate = c(.15, .2, .25)),
p_e = tibble::tibble(stratum = c("S1", "S2", "S3"), rate = c(.1, .16, .19)),
n = tibble::tibble(
stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0,
ratio = 1,
weight = "ss"

)

Example 4 ----
stratified case under inverse variance weighting and H0: rd0 = 0
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0,
ratio = 1,
weight = "invar"

)

Example 5 ----
stratified case under sample size weighting and H0: rd0 != 0
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),

gs_info_rd 55

rate = c(.1, .16, .19)
),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0.02,
ratio = 1,
weight = "ss"

)

Example 6 ----
stratified case under inverse variance weighting and H0: rd0 != 0
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = 0.02,
ratio = 1,
weight = "invar"

)

Example 7 ----
stratified case under inverse variance weighting and H0: rd0 != 0 and
rd0 difference for different statum
gs_info_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(50, 100, 200, 40, 80, 160, 60, 120, 240)

),
rd0 = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rd0 = c(0.01, 0.02, 0.03)

56 gs_info_wlr

),
ratio = 1,
weight = "invar"

)

gs_info_wlr Information and effect size for weighted log-rank test

Description

Based on piecewise enrollment rate, failure rate, and dropout rates computes approximate informa-
tion and effect size using an average hazard ratio model.

Usage

gs_info_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
ratio = 1,
event = NULL,
analysis_time = NULL,
weight = wlr_weight_fh,
approx = "asymptotic",
interval = c(0.01, 1000)

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate Failure and dropout rates.

ratio Experimental:Control randomization ratio.

event Targeted minimum events at each analysis.

analysis_time Targeted minimum study duration at each analysis.

weight Weight of weighted log rank test:

• "1" = unweighted.
• "n" = Gehan-Breslow.
• "sqrtN" = Tarone-Ware.
• "FH_p[a]_q[b]" = Fleming-Harrington with p=a and q=b.

approx Approximate estimation method for Z statistics.

• "event_driven" = only work under proportional hazard model with log
rank test.

• "asymptotic".

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

gs_power_ahr 57

Details

The ahr() function computes statistical information at targeted event times. The expected_time()
function is used to get events and average HR at targeted analysis_time.

Value

A tibble with columns Analysis, Time, N, Events, AHR, delta, sigma2, theta, info, info0. info and
info0 contain statistical information under H1, H0, respectively. For analysis k, Time[k] is the
maximum of analysis_time[k] and the expected time required to accrue the targeted event[k].
AHR is the expected average hazard ratio at each analysis.

Examples

library(gsDesign2)

Set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 500 / 12)

Set failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

Set the targeted number of events and analysis time
event <- c(30, 40, 50)
analysis_time <- c(10, 24, 30)

gs_info_wlr(
enroll_rate = enroll_rate, fail_rate = fail_rate,
event = event, analysis_time = analysis_time

)

gs_power_ahr Group sequential design power using average hazard ratio under non-
proportional hazards

Description

Group sequential design power using average hazard ratio under non-proportional hazards.

Usage

gs_power_ahr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = rep(0.001, 2)),

58 gs_power_ahr

event = c(30, 40, 50),
analysis_time = NULL,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = NULL),
test_lower = TRUE,
test_upper = TRUE,
ratio = 1,
binding = FALSE,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
r = 18,
tol = 1e-06,
interval = c(0.01, 1000),
integer = FALSE

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate Failure and dropout rates.

event Targeted event at each analysis.

analysis_time Minimum time of analysis.

upper Function to compute upper bound.

upar Parameters passed to upper.

lower Function to compute lower bound.

lpar Parameters passed to lower.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value of FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

ratio Experimental:Control randomization ratio (not yet implemented).

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

gs_power_ahr 59

tol Tolerance parameter for boundary convergence (on Z-scale).

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

integer Logical value integer whether it is an integer design (i.e., integer sample size and
events) or not. This argument is commonly used when creating integer design
via to_integer().

Details

Bound satisfy input upper bound specification in upper, upar, and lower bound specification in
lower, lpar. ahr() computes statistical information at targeted event times. The expected_time()
function is used to get events and average HR at targeted analysis_time.

Value

A tibble with columns analysis, bound, z, probability, theta, time, ahr, event. Contains a
row for each analysis and each bound.

Specification

• Calculate information and effect size based on AHR approximation using gs_info_ahr().

• Return a tibble of with columns Analysis, Bound, Z, Probability, theta, Time, AHR, Events
and contains a row for each analysis and each bound.

Examples

library(gsDesign2)
library(dplyr)

Example 1 ----
The default output of `gs_power_ahr()` is driven by events,
i.e., `event = c(30, 40, 50)`, `analysis_time = NULL`

gs_power_ahr(lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.1))

Example 2 ----
2-sided symmetric O'Brien-Fleming spending bound, driven by analysis time,
i.e., `event = NULL`, `analysis_time = c(12, 24, 36)`

gs_power_ahr(
analysis_time = c(12, 24, 36),
event = NULL,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025)

)

Example 3 ----
2-sided symmetric O'Brien-Fleming spending bound, driven by event,

60 gs_power_combo

i.e., `event = c(20, 50, 70)`, `analysis_time = NULL`

gs_power_ahr(
analysis_time = NULL,
event = c(20, 50, 70),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025)

)

Example 4 ----
2-sided symmetric O'Brien-Fleming spending bound,
driven by both `event` and `analysis_time`, i.e.,
both `event` and `analysis_time` are not `NULL`,
then the analysis will driven by the maximal one, i.e.,
Time = max(analysis_time, calculated Time for targeted event)
Events = max(events, calculated events for targeted analysis_time)

gs_power_ahr(
analysis_time = c(12, 24, 36),
event = c(30, 40, 50),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025)

)

gs_power_combo Group sequential design power using MaxCombo test under non-
proportional hazards

Description

Group sequential design power using MaxCombo test under non-proportional hazards

Usage

gs_power_combo(
enroll_rate = define_enroll_rate(duration = 12, rate = 500/12),
fail_rate = define_fail_rate(duration = c(4, 100), fail_rate = log(2)/15, hr = c(1,

0.6), dropout_rate = 0.001),
fh_test = rbind(data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3,
analysis_time = c(12, 24, 36)), data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1,
test = 2:3, analysis = 3, analysis_time = 36)),

ratio = 1,

gs_power_combo 61

binding = FALSE,
upper = gs_b,
upar = c(3, 2, 1),
lower = gs_b,
lpar = c(-1, 0, 1),
algorithm = mvtnorm::GenzBretz(maxpts = 1e+05, abseps = 1e-05),
...

)

Arguments

enroll_rate Enrollment rates.

fail_rate Failure and dropout rates.

fh_test A data frame to summarize the test in each analysis. See examples for its data
structure.

ratio Experimental:Control randomization ratio (not yet implemented).

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

upar Parameters passed to upper.

lower Function to compute lower bound.

lpar Parameters passed to lower.

algorithm an object of class GenzBretz, Miwa or TVPACK specifying both the algorithm to
be used as well as the associated hyper parameters.

... Additional parameters passed to mvtnorm::pmvnorm.

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Validate if lower and upper bounds have been specified.

• Extract info, info_fh, theta_fh and corr_fh from utility.

• Extract sample size via the maximum sample size of info.

• Calculate information fraction either for fixed or group sequential design.

• Compute spending function using gs_bound().

• Compute probability of crossing bounds under the null and alternative hypotheses using gs_prob_combo().

• Export required information for boundary and crossing probability

62 gs_power_npe

Examples

library(dplyr)
library(mvtnorm)
library(gsDesign)
library(gsDesign2)

enroll_rate <- define_enroll_rate(
duration = 12,
rate = 500 / 12

)

fail_rate <- define_fail_rate(
duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

fh_test <- rbind(
data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)),
data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, analysis = 3, analysis_time = 36)

)

Example 1 ----
Minimal Information Fraction derived bound

gs_power_combo(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
fh_test = fh_test,
upper = gs_spending_combo,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_combo,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

gs_power_npe Group sequential bound computation with non-constant effect

Description

Derives group sequential bounds and boundary crossing probabilities for a design. It allows a non-
constant treatment effect over time, but also can be applied for the usual homogeneous effect size
designs. It requires treatment effect and statistical information at each analysis as well as a method
of deriving bounds, such as spending. The routine enables two things not available in the gsDesign
package:

1. non-constant effect, 2) more flexibility in boundary selection. For many applications, the non-
proportional-hazards design function gs_design_nph() will be used; it calls this function.
Initial bound types supported are 1) spending bounds,

gs_power_npe 63

2. fixed bounds, and 3) Haybittle-Peto-like bounds. The requirement is to have a boundary up-
date method that can each bound without knowledge of future bounds. As an example, bounds
based on conditional power that require knowledge of all future bounds are not supported by
this routine; a more limited conditional power method will be demonstrated. Boundary family
designs Wang-Tsiatis designs including the original (non-spending-function-based) O’Brien-
Fleming and Pocock designs are not supported by gs_power_npe().

Usage

gs_power_npe(
theta = 0.1,
theta0 = NULL,
theta1 = NULL,
info = 1,
info0 = NULL,
info1 = NULL,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
upper = gs_b,
upar = qnorm(0.975),
lower = gs_b,
lpar = -Inf,
test_upper = TRUE,
test_lower = TRUE,
binding = FALSE,
r = 18,
tol = 1e-06

)

Arguments

theta Natural parameter for group sequential design representing expected incremen-
tal drift at all analyses; used for power calculation.

theta0 Natural parameter for null hypothesis, if needed for upper bound computation.

theta1 Natural parameter for alternate hypothesis, if needed for lower bound computa-
tion.

info Statistical information at all analyses for input theta.

info0 Statistical information under null hypothesis, if different than info; impacts null
hypothesis bound calculation.

info1 Statistical information under hypothesis used for futility bound calculation if
different from info; impacts futility hypothesis bound calculation.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

upper Function to compute upper bound.

64 gs_power_npe

upar Parameters passed to upper.

lower Function to compare lower bound.

lpar parameters passed to lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include a lower bound; single value of TRUE
(default) indicates all analyses; single value of FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

Value

A tibble with columns as analysis index, bounds, z, crossing probability, theta (standardized treat-
ment effect), theta1 (standardized treatment effect under alternative hypothesis), information frac-
tion, and statistical information.

Specification

• Extract the length of input info as the number of interim analysis.

• Validate if input info0 is NULL, so set it equal to info.

• Validate if the length of inputs info and info0 are the same.

• Validate if input theta is a scalar, so replicate the value for all k interim analysis.

• Validate if input theta1 is NULL and if it is a scalar. If it is NULL, set it equal to input theta.
If it is a scalar, replicate the value for all k interim analysis.

• Validate if input test_upper is a scalar, so replicate the value for all k interim analysis.

• Validate if input test_lower is a scalar, so replicate the value for all k interim analysis.

• Define vector a to be -Inf with length equal to the number of interim analysis.

• Define vector b to be Inf with length equal to the number of interim analysis.

• Define hgm1_0 and hgm1 to be NULL.

• Define upper_prob and lower_prob to be vectors of NA with length of the number of interim
analysis.

• Update lower and upper bounds using gs_b().

• If there are no interim analysis, compute probabilities of crossing upper and lower bounds
using h1().

• Compute cross upper and lower bound probabilities using hupdate() and h1().

• Return a tibble of analysis number, bound, z-values, probability of crossing bounds, theta,
theta1, info, and info0.

gs_power_npe 65

Examples

library(gsDesign)
library(gsDesign2)
library(dplyr)

Default (single analysis; Type I error controlled)
gs_power_npe(theta = 0) %>% filter(bound == "upper")

Fixed bound
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
upper = gs_b,
upar = gsDesign::gsDesign(k = 3, sfu = gsDesign::sfLDOF)$upper$bound,
lower = gs_b,
lpar = c(-1, 0, 0)

)

Same fixed efficacy bounds, no futility bound (i.e., non-binding bound), null hypothesis
gs_power_npe(

theta = rep(0, 3),
info = (1:3) * 40,
upar = gsDesign::gsDesign(k = 3, sfu = gsDesign::sfLDOF)$upper$bound,
lpar = rep(-Inf, 3)

) %>%
filter(bound == "upper")

Fixed bound with futility only at analysis 1; efficacy only at analyses 2, 3
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
upper = gs_b,
upar = c(Inf, 3, 2),
lower = gs_b,
lpar = c(qnorm(.1), -Inf, -Inf)

)

Spending function bounds
Lower spending based on non-zero effect
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfHSD, total_spend = 0.1, param = -1, timing = NULL)

)

Same bounds, but power under different theta
gs_power_npe(

theta = c(.15, .25, .35),
info = (1:3) * 40,

66 gs_power_npe

upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfHSD, total_spend = 0.1, param = -1, timing = NULL)

)

Two-sided symmetric spend, O'Brien-Fleming spending
Typically, 2-sided bounds are binding
x <- gs_power_npe(

theta = rep(0, 3),
info = (1:3) * 40,
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

)

Re-use these bounds under alternate hypothesis
Always use binding = TRUE for power calculations
gs_power_npe(

theta = c(.1, .2, .3),
info = (1:3) * 40,
binding = TRUE,
upar = (x %>% filter(bound == "upper"))$z,
lpar = -(x %>% filter(bound == "upper"))$z

)

Different values of `r` and `tol` lead to different numerical accuracy
Larger `r` and smaller `tol` give better accuracy, but leads to slow computation
n_analysis <- 5
gs_power_npe(

theta = rep(0.1, n_analysis),
theta0 = NULL,
theta1 = NULL,
info = 1:n_analysis,
info0 = 1:n_analysis,
info1 = NULL,
info_scale = "h0_info",
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_b,
lpar = -rep(Inf, n_analysis),
test_upper = TRUE,
test_lower = FALSE,
binding = FALSE,
Try different combinations of (r, tol) with
r in 6, 18, 24, 30, 35, 40, 50, 60, 70, 80, 90, 100
tol in 1e-6, 1e-12
r = 6,
tol = 1e-6

)

gs_power_rd 67

gs_power_rd Group sequential design power of binary outcome measuring in risk
difference

Description

Group sequential design power of binary outcome measuring in risk difference

Usage

gs_power_rd(
p_c = tibble::tibble(stratum = "All", rate = 0.2),
p_e = tibble::tibble(stratum = "All", rate = 0.15),
n = tibble::tibble(stratum = "All", n = c(40, 50, 60), analysis = 1:3),
rd0 = 0,
ratio = 1,
weight = c("unstratified", "ss", "invar"),
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(0.1), rep(-Inf, 2)),
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
binding = FALSE,
test_upper = TRUE,
test_lower = TRUE,
r = 18,
tol = 1e-06

)

Arguments

p_c Rate at the control group.

p_e Rate at the experimental group.

n Sample size.

rd0 Treatment effect under super-superiority designs, the default is 0.

ratio Experimental:control randomization ratio.

weight Weighting method, can be "unstratified", "ss", or "invar".

upper Function to compute upper bound.

lower Function to compare lower bound.

upar Parameters passed to upper.

lpar Parameters passed to lower.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

68 gs_power_rd

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include a lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

Value

A list with input parameter, analysis, and bound.

Examples

Example 1 ----
library(gsDesign)

unstratified case with H0: rd0 = 0
gs_power_rd(

p_c = tibble::tibble(
stratum = "All",
rate = .2

),
p_e = tibble::tibble(

stratum = "All",
rate = .15

),
n = tibble::tibble(

stratum = "All",
n = c(20, 40, 60),
analysis = 1:3

),
rd0 = 0,
ratio = 1,
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 2 ----
unstratified case with H0: rd0 != 0
gs_power_rd(

gs_power_rd 69

p_c = tibble::tibble(
stratum = "All",
rate = .2

),
p_e = tibble::tibble(

stratum = "All",
rate = .15

),
n = tibble::tibble(

stratum = "All",
n = c(20, 40, 60),
analysis = 1:3

),
rd0 = 0.005,
ratio = 1,
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

use spending function
gs_power_rd(

p_c = tibble::tibble(
stratum = "All",
rate = .2

),
p_e = tibble::tibble(

stratum = "All",
rate = .15

),
n = tibble::tibble(

stratum = "All",
n = c(20, 40, 60),
analysis = 1:3

),
rd0 = 0.005,
ratio = 1,
upper = gs_spending_bound,
lower = gs_b,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 3 ----
stratified case under sample size weighting and H0: rd0 = 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),

70 gs_power_rd

rate = c(.1, .16, .19)
),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0,
ratio = 1,
weight = "ss",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 4 ----
stratified case under inverse variance weighting and H0: rd0 = 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0,
ratio = 1,
weight = "invar",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 5 ----
stratified case under sample size weighting and H0: rd0 != 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

gs_power_wlr 71

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0.02,
ratio = 1,
weight = "ss",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 6 ----
stratified case under inverse variance weighting and H0: rd0 != 0
gs_power_rd(

p_c = tibble::tibble(
stratum = c("S1", "S2", "S3"),
rate = c(.15, .2, .25)

),
p_e = tibble::tibble(

stratum = c("S1", "S2", "S3"),
rate = c(.1, .16, .19)

),
n = tibble::tibble(

stratum = rep(c("S1", "S2", "S3"), each = 3),
analysis = rep(1:3, 3),
n = c(10, 20, 24, 18, 26, 30, 10, 20, 24)

),
rd0 = 0.03,
ratio = 1,
weight = "invar",
upper = gs_b,
lower = gs_b,
upar = gsDesign(k = 3, test.type = 1, sfu = sfLDOF, sfupar = NULL)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

gs_power_wlr Group sequential design power using weighted log rank test under
non-proportional hazards

Description

Group sequential design power using weighted log rank test under non-proportional hazards

Usage

gs_power_wlr(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),

72 gs_power_wlr

fail_rate = tibble(stratum = "All", duration = c(3, 100), fail_rate = log(2)/c(9, 18),
hr = c(0.9, 0.6), dropout_rate = rep(0.001, 2)),

event = c(30, 40, 50),
analysis_time = NULL,
binding = FALSE,
upper = gs_spending_bound,
lower = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lpar = list(sf = gsDesign::sfLDOF, total_spend = NULL),
test_upper = TRUE,
test_lower = TRUE,
ratio = 1,
weight = wlr_weight_fh,
info_scale = c("h0_h1_info", "h0_info", "h1_info"),
approx = "asymptotic",
r = 18,
tol = 1e-06,
interval = c(0.01, 1000),
integer = FALSE

)

Arguments

enroll_rate Enrollment rates.

fail_rate Failure and dropout rates.

event Targeted event at each analysis.

analysis_time Minimum time of analysis.

binding Indicator of whether futility bound is binding; default of FALSE is recommended.

upper Function to compute upper bound.

lower Function to compute lower bound.

upar Parameters passed to upper.

lpar Parameters passed to lower.

test_upper Indicator of which analyses should include an upper (efficacy) bound; single
value of TRUE (default) indicates all analyses; otherwise, a logical vector of the
same length as info should indicate which analyses will have an efficacy bound.

test_lower Indicator of which analyses should include an lower bound; single value of TRUE
(default) indicates all analyses; single value FALSE indicated no lower bound;
otherwise, a logical vector of the same length as info should indicate which
analyses will have a lower bound.

ratio Experimental:Control randomization ratio (not yet implemented).

weight Weight of weighted log rank test:

• "1" = unweighted.
• "n" = Gehan-Breslow.
• "sqrtN" = Tarone-Ware.

gs_power_wlr 73

• "FH_p[a]_q[b]" = Fleming-Harrington with p=a and q=b.

info_scale Information scale for calculation. Options are:

• "h0_h1_info" (default): variance under both null and alternative hypothe-
ses is used.

• "h0_info": variance under null hypothesis is used.
• "h1_info": variance under alternative hypothesis is used.

approx Approximate estimation method for Z statistics.

• "event_driven" = only work under proportional hazard model with log
rank test.

• "asymptotic".

r Integer value controlling grid for numerical integration as in Jennison and Turn-
bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally, r will not be changed by the user.

tol Tolerance parameter for boundary convergence (on Z-scale).

interval An interval that is presumed to include the time at which expected event count
is equal to targeted event.

integer Logical value integer whether it is an integer design (i.e., integer sample size and
events) or not. This argument is commonly used when creating integer design
via to_integer().

Value

A list with input parameters, enrollment rate, analysis, and bound.

Specification

• Compute information and effect size for Weighted Log-rank test using gs_info_wlr().

• Compute group sequential bound computation with non-constant effect using gs_power_npe().

• Combine information and effect size and power and return a tibble with columns Analysis,
Bound, Time, Events, Z, Probability, AHR, theta, info, and info0.

Examples

library(gsDesign)
library(gsDesign2)

set enrollment rates
enroll_rate <- define_enroll_rate(duration = 12, rate = 500 / 12)

set failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 15, # median survival 15 month
hr = c(1, .6),
dropout_rate = 0.001

)

74 gs_power_wlr

set the targeted number of events and analysis time
target_events <- c(30, 40, 50)
target_analysisTime <- c(10, 24, 30)

Example 1 ----

fixed bounds and calculate the power for targeted number of events
gs_power_wlr(

enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = NULL,
upper = gs_b,
upar = gsDesign(
k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL

)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 2 ----
fixed bounds and calculate the power for targeted analysis time

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = NULL,
analysis_time = target_analysisTime,
upper = gs_b,
upar = gsDesign(

k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL

)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 3 ----
fixed bounds and calculate the power for targeted analysis time & number of events

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,

gs_power_wlr 75

analysis_time = target_analysisTime,
upper = gs_b,
upar = gsDesign(

k = length(target_events),
test.type = 1,
n.I = target_events,
maxn.IPlan = max(target_events),
sfu = sfLDOF,
sfupar = NULL

)$upper$bound,
lower = gs_b,
lpar = c(qnorm(.1), rep(-Inf, 2))

)

Example 4 ----
spending bounds and calculate the power for targeted number of events

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = NULL,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

Example 5 ----
spending bounds and calculate the power for targeted analysis time

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = NULL,
analysis_time = target_analysisTime,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)

Example 6 ----
spending bounds and calculate the power for targeted analysis time & number of events

gs_power_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
event = target_events,
analysis_time = target_analysisTime,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_bound,

76 gs_spending_bound

lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)
)

gs_spending_bound Derive spending bound for group sequential boundary

Description

Computes one bound at a time based on spending under given distributional assumptions. While
user specifies gs_spending_bound() for use with other functions, it is not intended for use on
its own. Most important user specifications are made through a list provided to functions using
gs_spending_bound(). Function uses numerical integration and Newton-Raphson iteration to de-
rive an individual bound for a group sequential design that satisfies a targeted boundary crossing
probability. Algorithm is a simple extension of that in Chapter 19 of Jennison and Turnbull (2000).

Usage

gs_spending_bound(
k = 1,
par = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL,

max_info = NULL),
hgm1 = NULL,
theta = 0.1,
info = 1:3,
efficacy = TRUE,
test_bound = TRUE,
r = 18,
tol = 1e-06

)

Arguments

k Analysis for which bound is to be computed.

par A list with the following items:

• sf (class spending function).
• total_spend (total spend).
• param (any parameters needed by the spending function sf()).
• timing (a vector containing values at which spending function is to be eval-

uated or NULL if information-based spending is used).
• max_info (when timing is NULL, this can be input as positive number to be

used with info for information fraction at each analysis).

hgm1 Subdensity grid from h1() (k=2) or hupdate() (k>2) for analysis k-1; if k=1,
this is not used and may be NULL.

gs_spending_bound 77

theta Natural parameter used for lower bound only spending; represents average drift
at each time of analysis at least up to analysis k; upper bound spending is always
set under null hypothesis (theta = 0).

info Statistical information at all analyses, at least up to analysis k.
efficacy TRUE (default) for efficacy bound, FALSE otherwise.
test_bound A logical vector of the same length as info should indicate which analyses will

have a bound.
r Integer value controlling grid for numerical integration as in Jennison and Turn-

bull (2000); default is 18, range is 1 to 80. Larger values provide larger number
of grid points and greater accuracy. Normally r will not be changed by the user.

tol Tolerance parameter for convergence (on Z-scale).

Value

Returns a numeric bound (possibly infinite) or, upon failure, generates an error message.

Specification

• Set the spending time at analysis.
• Compute the cumulative spending at analysis.
• Compute the incremental spend at each analysis.
• Set test_bound a vector of length k > 1 if input as a single value.
• Compute spending for current bound.
• Iterate to convergence as in gsbound.c from gsDesign.
• Compute subdensity for final analysis in rejection region.
• Validate the output and return an error message in case of failure.
• Return a numeric bound (possibly infinite).

Author(s)

Keaven Anderson <keaven_anderson@merck.com>

References

Jennison C and Turnbull BW (2000), Group Sequential Methods with Applications to Clinical Tri-
als. Boca Raton: Chapman and Hall.

Examples

gs_power_ahr(
analysis_time = c(12, 24, 36),
event = c(30, 40, 50),
binding = TRUE,
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

)

78 gs_spending_combo

gs_spending_combo Derive spending bound for MaxCombo group sequential boundary

Description

Derive spending bound for MaxCombo group sequential boundary

Usage

gs_spending_combo(par = NULL, info = NULL)

Arguments

par A list with the following items:

• sf (class spending function).
• total_spend (total spend).
• param (any parameters needed by the spending function sf()).
• timing (a vector containing values at which spending function is to be eval-

uated or NULL if information-based spending is used).
• max_info (when timing is NULL, this can be input as positive number to be

used with info for information fraction at each analysis).

info Statistical information at all analyses, at least up to analysis k.

Value

A vector of the alpha spending per analysis.

Examples

alpha-spending
par <- list(sf = gsDesign::sfLDOF, total_spend = 0.025)
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfLDPocock, total_spend = 0.025)
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfHSD, total_spend = 0.025, param = -40)
gs_spending_combo(par, info = 1:3 / 3)

Kim-DeMets (power) Spending Function
par <- list(sf = gsDesign::sfPower, total_spend = 0.025, param = 1.5)
gs_spending_combo(par, info = 1:3 / 3)

Exponential Spending Function
par <- list(sf = gsDesign::sfExponential, total_spend = 0.025, param = 1)
gs_spending_combo(par, info = 1:3 / 3)

Two-parameter Spending Function Families

gs_spending_combo 79

par <- list(sf = gsDesign::sfLogistic, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfBetaDist, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfCauchy, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfExtremeValue, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfExtremeValue2, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfNormal, total_spend = 0.025, param = c(.1, .4, .01, .1))
gs_spending_combo(par, info = 1:3 / 3)

t-distribution Spending Function
par <- list(sf = gsDesign::sfTDist, total_spend = 0.025, param = c(-1, 1.5, 4))
gs_spending_combo(par, info = 1:3 / 3)

Piecewise Linear and Step Function Spending Functions
par <- list(sf = gsDesign::sfLinear, total_spend = 0.025, param = c(.2, .4, .05, .2))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfStep, total_spend = 0.025, param = c(1 / 3, 2 / 3, .1, .1))
gs_spending_combo(par, info = 1:3 / 3)

Pointwise Spending Function
par <- list(sf = gsDesign::sfPoints, total_spend = 0.025, param = c(.25, .25))
gs_spending_combo(par, info = 1:3 / 3)

Truncated, trimmed and gapped spending functions
par <- list(sf = gsDesign::sfTruncated, total_spend = 0.025,

param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfTrimmed, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))

gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfGapped, total_spend = 0.025,
param = list(trange = c(.2, .8), sf = gsDesign::sfHSD, param = 1))

gs_spending_combo(par, info = 1:3 / 3)

Xi and Gallo conditional error spending functions
par <- list(sf = gsDesign::sfXG1, total_spend = 0.025, param = 0.5)
gs_spending_combo(par, info = 1:3 / 3)

par <- list(sf = gsDesign::sfXG2, total_spend = 0.025, param = 0.14)
gs_spending_combo(par, info = 1:3 / 3)

80 gs_update_ahr

par <- list(sf = gsDesign::sfXG3, total_spend = 0.025, param = 0.013)
gs_spending_combo(par, info = 1:3 / 3)

beta-spending
par <- list(sf = gsDesign::sfLDOF, total_spend = 0.2)
gs_spending_combo(par, info = 1:3 / 3)

gs_update_ahr Group sequential design using average hazard ratio under non-
proportional hazards

Description

Group sequential design using average hazard ratio under non-proportional hazards

Usage

gs_update_ahr(
x = NULL,
alpha = NULL,
ustime = NULL,
lstime = NULL,
observed_data = NULL

)

Arguments

x A design created by either gs_design_ahr() or gs_power_ahr().

alpha Type I error for the updated design.

ustime Default is NULL in which case upper bound spending time is determined by
timing. Otherwise, this should be a vector of length k (total number of analyses)
with the spending time at each analysis.

lstime Default is NULL in which case lower bound spending time is determined by
timing. Otherwise, this should be a vector of length k (total number of analyses)
with the spending time at each analysis

observed_data a list of observed datasets by analyses.

Value

A list with input parameters, enrollment rate, analysis, and bound.

gs_update_ahr 81

Examples

library(gsDesign)
library(gsDesign2)
library(dplyr)

alpha <- 0.025
beta <- 0.1
ratio <- 1

Enrollment
enroll_rate <- define_enroll_rate(

duration = c(2, 2, 10),
rate = (1:3) / 3)

Failure and dropout
fail_rate <- define_fail_rate(

duration = c(3, Inf), fail_rate = log(2) / 9,
hr = c(1, 0.6), dropout_rate = .0001)

IA and FA analysis time
analysis_time <- c(20, 36)

Randomization ratio
ratio <- 1

Example A: one-sided design (efficacy only)

Original design
upper <- gs_spending_bound
upar <- list(sf = sfLDOF, total_spend = alpha)
x <- gs_design_ahr(

enroll_rate = enroll_rate, fail_rate = fail_rate,
alpha = alpha, beta = beta, ratio = ratio,
info_scale = "h0_info",
info_frac = NULL,
analysis_time = c(20, 36),
upper = gs_spending_bound, upar = upar,
lower = gs_b, lpar = rep(-Inf, 2),
test_upper = TRUE, test_lower = FALSE) |> to_integer()

Observed dataset at IA and FA
set.seed(123)

observed_data <- simtrial::sim_pw_surv(
n = x$analysis$n[x$analysis$analysis == 2],
stratum = data.frame(stratum = "All", p = 1),
block = c(rep("control", 2), rep("experimental", 2)),
enroll_rate = x$enroll_rate,
fail_rate = (fail_rate |> simtrial::to_sim_pw_surv())$fail_rate,
dropout_rate = (fail_rate |> simtrial::to_sim_pw_surv())$dropout_rate)

82 gs_update_ahr

observed_data_ia <- observed_data |> simtrial::cut_data_by_date(x$analysis$time[1])
observed_data_fa <- observed_data |> simtrial::cut_data_by_date(x$analysis$time[2])

observed_event_ia <- sum(observed_data_ia$event)
observed_event_fa <- sum(observed_data_fa$event)

planned_event_ia <- x$analysis$event[1]
planned_event_fa <- x$analysis$event[2]

Example A1 ----
IA spending = observed events / final planned events
the remaining alpha will be allocated to FA.
ustime <- c(observed_event_ia / planned_event_fa, 1)
gs_update_ahr(

x = x,
ustime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example A2 ----
IA, FA spending = observed events / final planned events
ustime <- c(observed_event_ia, observed_event_fa) / planned_event_fa
gs_update_ahr(

x = x,
ustime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example A3 ----
IA spending = min(observed events, planned events) / final planned events
ustime <- c(min(observed_event_ia, planned_event_ia) / planned_event_fa, 1)
gs_update_ahr(

x = x,
ustime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example A4 ----
IA spending = min(observed events, planned events) / final planned events
ustime <- c(min(observed_event_ia, planned_event_ia),

min(observed_event_fa, planned_event_fa)) / planned_event_fa
gs_update_ahr(

x = x,
ustime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

alpha is upadted to 0.05
gs_update_ahr(

x = x,
alpha = 0.05,
ustime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example B: Two-sided asymmetric design,
beta-spending with non-binding lower bound

gs_update_ahr 83

Original design
x <- gs_design_ahr(

enroll_rate = enroll_rate, fail_rate = fail_rate,
alpha = alpha, beta = beta, ratio = ratio,
info_scale = "h0_info",
info_frac = NULL, analysis_time = c(20, 36),
upper = gs_spending_bound,
upar = list(sf = sfLDOF, total_spend = alpha),
test_upper = TRUE,
lower = gs_spending_bound,
lpar = list(sf = sfLDOF, total_spend = beta),
test_lower = c(TRUE, FALSE),
binding = FALSE) |> to_integer()

Example B1 ----
IA spending = observed events / final planned events
the remaining alpha will be allocated to FA.
ustime <- c(observed_event_ia / planned_event_fa, 1)
gs_update_ahr(

x = x,
ustime = ustime,
lstime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example B2 ----
IA, FA spending = observed events / final planned events
ustime <- c(observed_event_ia, observed_event_fa) / planned_event_fa
gs_update_ahr(

x = x,
ustime = ustime,
lstime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example B3 ----
ustime <- c(min(observed_event_ia, planned_event_ia) / planned_event_fa, 1)
gs_update_ahr(

x = x,
ustime = ustime,
lstime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example B4 ----
IA spending = min(observed events, planned events) / final planned events
ustime <- c(min(observed_event_ia, planned_event_ia),

min(observed_event_fa, planned_event_fa)) / planned_event_fa
gs_update_ahr(

x = x,
ustime = ustime,
lstime = ustime,
observed_data = list(observed_data_ia, observed_data_fa))

Example B5 ----

84 ppwe

alpha is updated to 0.05 ----
gs_update_ahr(x = x, alpha = 0.05)

Example B6 ----
updated boundaries only when IA data is observed
ustime <- c(observed_event_ia / planned_event_fa, 1)
gs_update_ahr(

x = x,
ustime = ustime,
lstime = ustime,
observed_data = list(observed_data_ia, NULL))

Example C: Two-sided asymmetric design,
with calendar spending for efficacy and futility bounds
beta-spending with non-binding lower bound

Original design
x <- gs_design_ahr(

enroll_rate = enroll_rate, fail_rate = fail_rate,
alpha = alpha, beta = beta, ratio = ratio,
info_scale = "h0_info",
info_frac = NULL, analysis_time = c(20, 36),
upper = gs_spending_bound,
upar = list(sf = sfLDOF, total_spend = alpha, timing = c(20, 36) / 36),
test_upper = TRUE,
lower = gs_spending_bound,
lpar = list(sf = sfLDOF, total_spend = beta, timing = c(20, 36) / 36),
test_lower = c(TRUE, FALSE),
binding = FALSE) |> to_integer()

Updated design due to potential change of multiplicity graph
gs_update_ahr(x = x, alpha = 0.05)

ppwe Piecewise exponential cumulative distribution function

Description

Computes the cumulative distribution function (CDF) or survival rate for a piecewise exponential
distribution.

Usage

ppwe(x, duration, rate, lower_tail = FALSE)

Arguments

x Times at which distribution is to be computed.

duration A numeric vector of time duration.

ppwe 85

rate A numeric vector of event rate.

lower_tail Indicator of whether lower (TRUE) or upper tail (FALSE; default) of CDF is to be
computed.

Details

Suppose λi is the failure rate in the interval (ti−1, ti], i = 1, 2, . . . ,M where 0 = t0 < ti . . . , tM =
∞. The cumulative hazard function at an arbitrary time t > 0 is then:

Λ(t) =

M∑
i=1

δ(t ≤ ti)(min(t, ti)− ti−1)λi.

The survival at time t is then
S(t) = exp(−Λ(t)).

Value

A vector with cumulative distribution function or survival values.

Specification

• Validate if input enrollment rate is a strictly increasing non-negative numeric vector.

• Validate if input failure rate is of type data.frame.

• Validate if input failure rate contains duration column.

• Validate if input failure rate contains rate column.

• Validate if input lower_tail is logical.

• Convert rates to step function.

• Add times where rates change to enrollment rates.

• Make a tibble of the input time points x, duration, hazard rates at points, cumulative hazard
and survival.

• Extract the expected cumulative or survival of piecewise exponential distribution.

• If input lower_tail is true, return the CDF, else return the survival for ppwe

Examples

Plot a survival function with 2 different sets of time values
to demonstrate plot precision corresponding to input parameters.

x1 <- seq(0, 10, 10 / pi)
duration <- c(3, 3, 1)
rate <- c(.2, .1, .005)

survival <- ppwe(
x = x1,
duration = duration,
rate = rate

)

86 pw_info

plot(x1, survival, type = "l", ylim = c(0, 1))

x2 <- seq(0, 10, .25)
survival <- ppwe(

x = x2,
duration = duration,
rate = rate

)
lines(x2, survival, col = 2)

pw_info Average hazard ratio under non-proportional hazards

Description

Provides a geometric average hazard ratio under various non-proportional hazards assumptions for
either single or multiple strata studies. The piecewise exponential distribution allows a simple
method to specify a distribution and enrollment pattern where the enrollment, failure and dropout
rates changes over time.

Usage

pw_info(
enroll_rate = define_enroll_rate(duration = c(2, 2, 10), rate = c(3, 6, 9)),
fail_rate = define_fail_rate(duration = c(3, 100), fail_rate = log(2)/c(9, 18), hr =

c(0.9, 0.6), dropout_rate = 0.001),
total_duration = 30,
ratio = 1

)

Arguments

enroll_rate An enroll_rate data frame with or without stratum created by define_enroll_rate().

fail_rate A fail_rate data frame with or without stratum created by define_fail_rate().

total_duration Total follow-up from start of enrollment to data cutoff; this can be a single value
or a vector of positive numbers.

ratio Ratio of experimental to control randomization.

Value

A data frame with time (from total_duration), stratum, t, hr (hazard ratio), event (expected
number of events), info (information under given scenarios), info0 (information under related null
hypothesis), and n (sample size) for each value of total_duration input

s2pwe 87

Examples

Example: default
pw_info()

Example: default with multiple analysis times (varying total_duration)
pw_info(total_duration = c(15, 30))

Stratified population
enroll_rate <- define_enroll_rate(

stratum = c(rep("Low", 2), rep("High", 3)),
duration = c(2, 10, 4, 4, 8),
rate = c(5, 10, 0, 3, 6)

)
fail_rate <- define_fail_rate(

stratum = c(rep("Low", 2), rep("High", 2)),
duration = c(1, Inf, 1, Inf),
fail_rate = c(.1, .2, .3, .4),
dropout_rate = .001,
hr = c(.9, .75, .8, .6)

)
Give results by change-points in the piecewise model
ahr(enroll_rate = enroll_rate, fail_rate = fail_rate, total_duration = c(15, 30))

Same example, give results by strata and time period
pw_info(enroll_rate = enroll_rate, fail_rate = fail_rate, total_duration = c(15, 30))

s2pwe Approximate survival distribution with piecewise exponential distribu-
tion

Description

Converts a discrete set of points from an arbitrary survival distribution to a piecewise exponential
approximation.

Usage

s2pwe(times, survival)

Arguments

times Positive increasing times at which survival distribution is provided.

survival Survival (1 - cumulative distribution function) at specified times.

Value

A tibble containing the duration and rate.

88 summary.fixed_design

Specification

• Validate if input times is increasing positive finite numbers.

• Validate if input survival is numeric and same length as input times.

• Validate if input survival is positive, non-increasing, less than or equal to 1 and greater than 0.

• Create a tibble of inputs times and survival.

• Calculate the duration, hazard and the rate.

• Return the duration and rate by s2pwe

Examples

Example: arbitrary numbers
s2pwe(1:9, (9:1) / 10)
Example: lognormal
s2pwe(c(1:6, 9), plnorm(c(1:6, 9), meanlog = 0, sdlog = 2, lower.tail = FALSE))

summary.fixed_design Summary for fixed design or group sequential design objects

Description

Summary for fixed design or group sequential design objects

Usage

S3 method for class 'fixed_design'
summary(object, ...)

S3 method for class 'gs_design'
summary(
object,
analysis_vars = NULL,
analysis_decimals = NULL,
col_vars = NULL,
col_decimals = NULL,
bound_names = c("Efficacy", "Futility"),
...

)

Arguments

object A design object returned by fixed_design_xxx() and gs_design_xxx().

... Additional parameters (not used).

analysis_vars The variables to be put at the summary header of each analysis.

summary.fixed_design 89

analysis_decimals

The displayed number of digits of analysis_vars. If the vector is unnamed,
it must match the length of analysis_vars. If the vector is named, you only
have to specify the number of digits for the variables you want to be displayed
differently than the defaults.

col_vars The variables to be displayed.

col_decimals The decimals to be displayed for the displayed variables in col_vars. If the
vector is unnamed, it must match the length of col_vars. If the vector is named,
you only have to specify the number of digits for the columns you want to be
displayed differently than the defaults.

bound_names Names for bounds; default is c("Efficacy", "Futility").

Value

A summary table (data frame).

Examples

library(dplyr)

Enrollment rate
enroll_rate <- define_enroll_rate(

duration = 18,
rate = 20

)

Failure rates
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

)

Study duration in months
study_duration <- 36

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025
Type II error (1 - power)
beta <- 0.1

AHR ----
under fixed power
fixed_design_ahr(

alpha = alpha,
power = 1 - beta,
enroll_rate = enroll_rate,

90 summary.fixed_design

fail_rate = fail_rate,
study_duration = study_duration,
ratio = ratio

) %>% summary()

FH ----
under fixed power
fixed_design_fh(

alpha = alpha,
power = 1 - beta,
enroll_rate = enroll_rate,
fail_rate = fail_rate,
study_duration = study_duration,
ratio = ratio

) %>% summary()

Design parameters ----
library(gsDesign)
library(gsDesign2)
library(dplyr)

enrollment/failure rates
enroll_rate <- define_enroll_rate(

stratum = "All",
duration = 12,
rate = 1

)
fail_rate <- define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

)

Information fraction
info_frac <- (1:3) / 3

Analysis times in months; first 2 will be ignored as info_frac will not be achieved
analysis_time <- c(.01, .02, 36)

Experimental / Control randomization ratio
ratio <- 1

1-sided Type I error
alpha <- 0.025

Type II error (1 - power)
beta <- .1

Upper bound
upper <- gs_spending_bound
upar <- list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL, timing = NULL)

summary.fixed_design 91

Lower bound
lower <- gs_spending_bound
lpar <- list(sf = gsDesign::sfHSD, total_spend = 0.1, param = 0, timing = NULL)

weight function in WLR
wgt00 <- function(x, arm0, arm1) {

wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = 0)
}
wgt05 <- function(x, arm0, arm1) {

wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = .5)
}

test in COMBO
fh_test <- rbind(
data.frame(rho = 0, gamma = 0, tau = -1, test = 1, analysis = 1:3, analysis_time = c(12, 24, 36)),
data.frame(rho = c(0, 0.5), gamma = 0.5, tau = -1, test = 2:3, analysis = 3, analysis_time = 36)

)

Example 1 ----

x_ahr <- gs_design_ahr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
info_frac = info_frac, # Information fraction
analysis_time = analysis_time,
ratio = ratio,
alpha = alpha,
beta = beta,
upper = upper,
upar = upar,
lower = lower,
lpar = lpar

)

x_ahr %>% summary()

Customize the digits to display
x_ahr %>% summary(analysis_vars = c("time", "event", "info_frac"), analysis_decimals = c(1, 0, 2))

Customize the labels of the crossing probability
x_ahr %>% summary(bound_names = c("A is better", "B is better"))

Customize the variables to be summarized for each analysis
x_ahr %>% summary(analysis_vars = c("n", "event"), analysis_decimals = c(1, 1))

Customize the digits for the columns
x_ahr %>% summary(col_decimals = c(z = 4))

Customize the columns to display
x_ahr %>% summary(col_vars = c("z", "~hr at bound", "nominal p"))

Customize columns and digits
x_ahr %>% summary(col_vars = c("z", "~hr at bound", "nominal p"),

92 summary.fixed_design

col_decimals = c(4, 2, 2))

Example 2 ----

x_wlr <- gs_design_wlr(
enroll_rate = enroll_rate,
fail_rate = fail_rate,
weight = wgt05,
info_frac = NULL,
analysis_time = sort(unique(x_ahr$analysis$time)),
ratio = ratio,
alpha = alpha,
beta = beta,
upper = upper,
upar = upar,
lower = lower,
lpar = lpar

)
x_wlr %>% summary()

Maxcombo ----

x_combo <- gs_design_combo(
ratio = 1,
alpha = 0.025,
beta = 0.2,
enroll_rate = define_enroll_rate(duration = 12, rate = 500 / 12),
fail_rate = tibble::tibble(
stratum = "All",
duration = c(4, 100),
fail_rate = log(2) / 15, hr = c(1, .6), dropout_rate = .001

),
fh_test = fh_test,
upper = gs_spending_combo,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025),
lower = gs_spending_combo,
lpar = list(sf = gsDesign::sfLDOF, total_spend = 0.2)

)
x_combo %>% summary()

Risk difference ----

gs_design_rd(
p_c = tibble::tibble(stratum = "All", rate = .2),
p_e = tibble::tibble(stratum = "All", rate = .15),
info_frac = c(0.7, 1),
rd0 = 0,
alpha = .025,
beta = .1,
ratio = 1,
stratum_prev = NULL,
weight = "unstratified",

to_integer 93

upper = gs_b,
lower = gs_b,
upar = gsDesign::gsDesign(

k = 3, test.type = 1, sfu = gsDesign::sfLDOF, sfupar = NULL
)$upper$bound,
lpar = c(qnorm(.1), rep(-Inf, 2))

) %>% summary()

to_integer Rounds sample size to an even number for equal design

Description

Rounds sample size to an even number for equal design

Usage

to_integer(x, ...)

S3 method for class 'fixed_design'
to_integer(x, sample_size = TRUE, ...)

S3 method for class 'gs_design'
to_integer(x, sample_size = TRUE, round_up_final = TRUE, ...)

Arguments

x An object returned by fixed_design_xxx() and gs_design_xxx().

... Additional parameters (not used).

sample_size Logical, indicting if ceiling sample size to an even integer.

round_up_final Events at final analysis is rounded up if TRUE; otherwise, just rounded, unless it
is very close to an integer.

Value

A list similar to the output of fixed_design_xxx() and gs_design_xxx(), except the sample size is an
integer.

Examples

library(dplyr)
library(gsDesign2)

Average hazard ratio

x <- fixed_design_ahr(
alpha = .025, power = .9,

94 to_integer

enroll_rate = define_enroll_rate(duration = 18, rate = 1),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12, hr = c(1, .6),
dropout_rate = .001

),
study_duration = 36

)
x |>

to_integer() |>
summary()

FH
x <- fixed_design_fh(

alpha = 0.025, power = 0.9,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12,
hr = c(1, .6),
dropout_rate = .001

),
rho = 0.5, gamma = 0.5,
study_duration = 36, ratio = 1

)
x |>

to_integer() |>
summary()

MB
x <- fixed_design_mb(

alpha = 0.025, power = 0.9,
enroll_rate = define_enroll_rate(duration = 18, rate = 20),
fail_rate = define_fail_rate(

duration = c(4, 100),
fail_rate = log(2) / 12, hr = c(1, .6),
dropout_rate = .001

),
tau = 4,
study_duration = 36, ratio = 1

)
x |>

to_integer() |>
summary()

Example 1: Information fraction based spending
gs_design_ahr(

analysis_time = c(18, 30),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL),
lower = gs_b,
lpar = c(-Inf, -Inf)

wlr_weight 95

) |>
to_integer() |>
summary()

gs_design_wlr(
analysis_time = c(18, 30),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL),
lower = gs_b,
lpar = c(-Inf, -Inf)

) |>
to_integer() |>
summary()

gs_design_rd(
p_c = tibble::tibble(stratum = c("A", "B"), rate = c(.2, .3)),
p_e = tibble::tibble(stratum = c("A", "B"), rate = c(.15, .27)),
weight = "ss",
stratum_prev = tibble::tibble(stratum = c("A", "B"), prevalence = c(.4, .6)),
info_frac = c(0.7, 1),
upper = gs_spending_bound,
upar = list(sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL),
lower = gs_b,
lpar = c(-Inf, -Inf)

) |>
to_integer() |>
summary()

Example 2: Calendar based spending
x <- gs_design_ahr(

upper = gs_spending_bound,
analysis_time = c(18, 30),
upar = list(
sf = gsDesign::sfLDOF, total_spend = 0.025, param = NULL,
timing = c(18, 30) / 30

),
lower = gs_b,
lpar = c(-Inf, -Inf)

) |> to_integer()

The IA nominal p-value is the same as the IA alpha spending
x$bound$`nominal p`[1]
gsDesign::sfLDOF(alpha = 0.025, t = 18 / 30)$spend

wlr_weight Weight functions for weighted log-rank test

Description

• wlr_weight_fh is Fleming-Harrington, FH(rho, gamma) weight function.

96 wlr_weight

• wlr_weight_1 is constant for log rank test.

• wlr_weight_power is Gehan-Breslow and Tarone-Ware weight function.

• wlr_weight_mb is Magirr (2021) weight function.

Usage

wlr_weight_fh(x, arm0, arm1, rho = 0, gamma = 0, tau = NULL)

wlr_weight_1(x, arm0, arm1)

wlr_weight_n(x, arm0, arm1, power = 1)

wlr_weight_mb(x, arm0, arm1, tau = NULL, w_max = Inf)

Arguments

x A vector of numeric values.

arm0 An arm object defined in the npsurvSS package.

arm1 An arm object defined in the npsurvSS package.

rho A scalar parameter that controls the type of test.

gamma A scalar parameter that controls the type of test.

tau A scalar parameter of the cut-off time for modest weighted log rank test.

power A scalar parameter that controls the power of the weight function.

w_max A scalar parameter of the cut-off weight for modest weighted log rank test.

Value

A vector of weights.

A vector of weights.

A vector of weights.

A vector of weights.

Specification

• Compute the sample size via the sum of arm sizes.

• Compute the proportion of size in the two arms.

• If the input tau is specified, define time up to the cut off time tau.

• Compute the CDF using the proportion of the size in the two arms and npsruvSS::psurv().

• Return the Fleming-Harrington weights for weighted Log-rank test.

wlr_weight 97

Examples

enroll_rate <- define_enroll_rate(
duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_fh(1:3, arm0, arm1, rho = 0, gamma = 0, tau = NULL)
enroll_rate <- define_enroll_rate(

duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_1(1:3, arm0, arm1)
enroll_rate <- define_enroll_rate(

duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_n(1:3, arm0, arm1, power = 2)

98 wlr_weight

enroll_rate <- define_enroll_rate(
duration = c(2, 2, 10),
rate = c(3, 6, 9)

)

fail_rate <- define_fail_rate(
duration = c(3, 100),
fail_rate = log(2) / c(9, 18),
hr = c(.9, .6),
dropout_rate = .001

)

gs_arm <- gs_create_arm(enroll_rate, fail_rate, ratio = 1)
arm0 <- gs_arm$arm0
arm1 <- gs_arm$arm1

wlr_weight_mb(1:3, arm0, arm1, tau = -1, w_max = 1.2)

Index

ahr, 3
ahr(), 21, 51, 57, 59
ahr_blinded, 4
as_gt, 6
as_rtf, 10

define_enroll_rate, 14
define_enroll_rate(), 3, 16, 19, 21, 31, 50,

52, 56, 58, 86
define_fail_rate, 15
define_fail_rate(), 3, 19, 21, 31, 50, 52, 86

expected_accrual, 16
expected_event, 18
expected_time, 21
expected_time(), 51, 57, 59

fixed_design_ahr, 22
fixed_design_ahr(), 23
fixed_design_fh (fixed_design_ahr), 22
fixed_design_fh(), 23
fixed_design_lf (fixed_design_ahr), 22
fixed_design_lf(), 23
fixed_design_maxcombo

(fixed_design_ahr), 22
fixed_design_maxcombo(), 23
fixed_design_mb (fixed_design_ahr), 22
fixed_design_mb(), 23
fixed_design_milestone

(fixed_design_ahr), 22
fixed_design_milestone(), 23
fixed_design_rd (fixed_design_ahr), 22
fixed_design_rd(), 23
fixed_design_rmst (fixed_design_ahr), 22
fixed_design_rmst(), 23

GenzBretz, 37, 61
gs_b, 30
gs_create_arm, 31
gs_design_ahr, 32

gs_design_ahr(), 80
gs_design_combo, 36
gs_design_npe, 39
gs_design_npe(), 30
gs_design_rd, 44
gs_design_wlr, 47
gs_info_ahr, 50
gs_info_combo, 52
gs_info_rd, 53
gs_info_wlr, 56
gs_power_ahr, 57
gs_power_ahr(), 80
gs_power_combo, 60
gs_power_npe, 62
gs_power_npe(), 30, 39
gs_power_rd, 67
gs_power_wlr, 71
gs_spending_bound, 76
gs_spending_bound(), 30
gs_spending_combo, 78
gs_update_ahr, 80

Miwa, 37, 61
mvtnorm::pmvnorm, 37, 61

ppwe, 84
pw_info, 86

s2pwe, 87
summary.fixed_design, 88
summary.gs_design

(summary.fixed_design), 88
survival::Surv(), 5

to_integer, 93
to_integer(), 59, 73
TVPACK, 37, 61

wlr_weight, 95
wlr_weight_1 (wlr_weight), 95
wlr_weight_fh (wlr_weight), 95

99

100 INDEX

wlr_weight_mb (wlr_weight), 95
wlr_weight_n (wlr_weight), 95

	ahr
	ahr_blinded
	as_gt
	as_rtf
	define_enroll_rate
	define_fail_rate
	expected_accrual
	expected_event
	expected_time
	fixed_design_ahr
	gs_b
	gs_create_arm
	gs_design_ahr
	gs_design_combo
	gs_design_npe
	gs_design_rd
	gs_design_wlr
	gs_info_ahr
	gs_info_combo
	gs_info_rd
	gs_info_wlr
	gs_power_ahr
	gs_power_combo
	gs_power_npe
	gs_power_rd
	gs_power_wlr
	gs_spending_bound
	gs_spending_combo
	gs_update_ahr
	ppwe
	pw_info
	s2pwe
	summary.fixed_design
	to_integer
	wlr_weight
	Index

