This document will guide the developers on how to customize the hover label based on the study needs.
Hovering is one of the interactive feature for the box plots. When the user hovers the mouse cursor over a specific part of the plot, additional information related to that specific data point or summary statistic is displayed.
Hovering feature in interactive box plots contains two parts: Hover label of box and Hover label of outlier.
Hover label of box is to display the descriptive statistics for the plots on the hovering box.
For example: N, Mean, Median, Q1, Q3, Min and Max
Hover label of outlier is to display the information for the outlier out of box.
For example: Subject ID, Change from Baseline and etc.
prepare_boxly()
:hover_var_outlier
: A character vector
of hover variables for outlier.
prepare_boxly <- function(meta,
hover_var_outlier = c("USUBJID", metalite::collect_adam_mapping(meta, analysis)$y)
...
)
The information for the outlier out of the box could be defined as
hover_var_outlier
. The developers could update
hover_var_outlier
to customize what to display in the
hovering. The default variables selected from meta objects are “USUBJID”
and the y axis variable from meta analysis plan (for boxly plot, the y
axis is “CHG”). Note that the variables defined in
hover_var_outlier
should be one-to-one mapping to the
hover_outlier_label
in boxly()
function which
will talk about in the next section.
boxly()
:hover_summary_var
: A character vector
of statistics to be displayed on hover label of box.
hover_outlier_label
: A character vector
of hover label for outlier.
boxly <- function(outdata,
hover_summary_var = c("n", "min", "q1", "median", "mean", "q3", "max"),
hover_outlier_label = c("Participant ID", "Parameter value"),
...
)
The preferred display label name in hover label of outlier
corresponding to the value from meta objects could be defined as
hover_outlier_label
. The default label are “Participant ID”
showing the “USUBJID” and the “Parameter value” showing the “CHG”
(Change from Baseline). The developer could add more information (i.e.,
Baseline value, Analysis date). Make sure that the number of
hover_outlier_label
should match
hover_var_outlier
and the one-to-one mapping relationship
between them.
The descriptive statistics displayed on hover label of box are
defined as hover_summary_var
. The developer could choose to
display only partial descriptive statistics among “n”, “min”, “q1”,
“median”, “mean”, “q3” or “max”. The default value are including all
these descriptive statistics.
In this example, we plan to add more hover labels for outliers.
Step1: Create a list of metadata using meta_boxly()
.
Using Lab data as example.
meta <- meta_boxly(
boxly_adsl,
boxly_adlb,
population_term = "apat",
observation_term = "wk12",
observation_subset = AVISITN <= 12 & !is.na(CHG)
)
Step2: Call prepare_boxly()
function to prepare the
metadata as required by the user. In this example, we plan to add
Baseline Value and Analysis Date, so besides the default “USUBJID” and
“CHG”(as y axis label collected from meta mapping object),“BASE” and
“ADT” are also included in the hover_var_outlier
.
outdata <- prepare_boxly(
meta,
hover_var_outlier = c(
"USUBJID",
metalite::collect_adam_mapping(meta, meta$plan$analysis)$y,
"BASE",
"ADT"
)
)
Step 3: Call boxly()
function to create the interactive
plot. In this step, “Base Value” and “Analysis Date” are included in
hover_outlier_label
as displaying label for “BASE” and
“ADT” which were defined in hover_var_outlier
from previous
step.
boxly(
outdata,
hover_outlier_label = c(
"Participant ID",
"Parameter value",
"Base Value",
"Analysis Date"
)
)
Here, you will notice “Participant ID”, “Parameter value”,“Base Value”and “Analysis Date” are all displaying when pointing to the outlier plot.
In this example, we plan to only display number of participant, Q1, mean, median, Q3 for the hover label of box.
Step1: Create a list of metadata using meta_boxly()
.
Using Vital Sign data as example.
meta_boxly(
boxly_adsl,
boxly_advs,
population_term = "apat",
observation_term = "wk12",
observation_subset = AVISITN <= 12 & !is.na(CHG)
)
#> ADaM metadata:
#> .$data_population Population data with 254 subjects
#> .$data_observation Observation data with 32139 records
#> .$plan Analysis plan with 1 plans
#>
#>
#> Analysis population type:
#> name id group var subset label
#> 1 'apat' 'USUBJID' 'TRTA' SAFFL == 'Y' ''
#>
#>
#> Analysis observation type:
#> name id group var subset label
#> 1 'wk12' 'USUBJID' 'TRTA' 'PARAM' AVISITN <= 12 & !is.na(CHG) ''
#>
#>
#> Analysis parameter type:
#> name label subset
#> 1 'DIABP' 'Diastolic Blood Pressure (mmHg)' PARAMCD == 'DIABP'
#> 2 'HEIGHT' 'Height (cm)' PARAMCD == 'HEIGHT'
#> 3 'PULSE' 'Pulse Rate (BEATS/MIN)' PARAMCD == 'PULSE'
#> 4 'SYSBP' 'Systolic Blood Pressure (mmHg)' PARAMCD == 'SYSBP'
#> 5 'TEMP' 'Temperature (C)' PARAMCD == 'TEMP'
#> 6 'WEIGHT' 'Weight (kg)' PARAMCD == 'WEIGHT'
#>
#>
#> Analysis function:
#> name label
#> 1 'boxly' 'Interactive Box Plot'
Step2: Call prepare_boxly()
function to prepare the
metadata as required by the user. In this step, we did not change
hover_var_outlier
, so the hover label for the outlier will
display the default value “Participant ID” and “Parameter value” for
“USUBJID” and “CHG”.
Step 3: Call boxly()
function to create the interactive
plot. We only include “n” for number of participant, “q1” for Q1,
“median” for Median, “mean” for Mean, “q3” for Q3. We remove the “min”
and “max” from the default value.
Here, you will notice that only number of participant, Q1, mean, median, Q3 are displaying when pointing to the plot in the box.
In this example, we plan to combine Example 1 and Example 2 to customize label of outlier and label of box at the same step. Using ECG data as example.
meta_boxly(
boxly_adsl,
boxly_adeg,
population_term = "apat",
observation_term = "wk12",
observation_subset = AVISITN <= 12 & !is.na(CHG)
)
#> ADaM metadata:
#> .$data_population Population data with 254 subjects
#> .$data_observation Observation data with 32139 records
#> .$plan Analysis plan with 1 plans
#>
#>
#> Analysis population type:
#> name id group var subset label
#> 1 'apat' 'USUBJID' 'TRTA' SAFFL == 'Y' ''
#>
#>
#> Analysis observation type:
#> name id group var subset label
#> 1 'wk12' 'USUBJID' 'TRTA' 'PARAM' AVISITN <= 12 & !is.na(CHG) ''
#>
#>
#> Analysis parameter type:
#> name label subset
#> 1 'ARATE' 'Atrial Rate (beats/min)' PARAMCD == 'ARATE'
#> 2 'PR' 'PR Interval (msec)' PARAMCD == 'PR'
#> 3 'QRS' 'QRS Interval (msec)' PARAMCD == 'QRS'
#> 4 'QT' 'QT Interval (msec)' PARAMCD == 'QT'
#> 5 'QTCF' 'QTc Interval Fridericia (msec)' PARAMCD == 'QTCF'
#> 6 'RR' 'RR Interval (msec)' PARAMCD == 'RR'
#>
#>
#> Analysis function:
#> name label
#> 1 'boxly' 'Interactive Box Plot'
outdata <- prepare_boxly(
meta,
hover_var_outlier = c(
"USUBJID",
metalite::collect_adam_mapping(meta, meta$plan$analysis)$y,
"BASE",
"ADT",
"AVAL"
)
)
boxly(
outdata,
hover_summary_var = c("n", "q1", "median", "mean", "q3"),
hover_outlier_label = c(
"Participant ID",
"Parameter value",
"Base Value",
"Analysis Date",
"Analysis Value"
)
)
Here, you will notice that both label of outlier and label of box are different from the default value. Please follow above steps to customize the interactive box plot hover label to meet your study needs.